using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman51 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman51() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman51(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman51(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("I.50.26 x1*(cos(omega*t)+alpha*cos(omega*t)**2) | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "x" : "x_noise"; } } protected override string[] VariableNames { get { return new[] {"x1", "omega", "t", "alpha", noiseRatio == null ? "x" : "x_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"x1", "omega", "t", "alpha"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var t = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var x = new List(); data.Add(x1); data.Add(omega); data.Add(t); data.Add(alpha); data.Add(x); for (var i = 0; i < x1.Count; i++) { var res = x1[i] * (Math.Cos(omega[i] * t[i]) + alpha[i] * Math.Pow(Math.Cos(omega[i] * t[i]), 2)); x.Add(res); } if (noiseRatio != null) { var x_noise = new List(); var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * x.StandardDeviationPop(); x_noise.AddRange(x.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(x); data.Add(x_noise); } return data; } } }