using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman36 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman36() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman36(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman36(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("I.34.14 (1+v/c)/sqrt(1-v**2/c**2)*omega_0 | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "omega" : "omega_noise"; } } protected override string[] VariableNames { get { return new[] {"c", "v", "omega_0", noiseRatio == null ? "omega" : "omega_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"c", "v", "omega_0"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 10).ToList(); var v = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var omega = new List(); data.Add(c); data.Add(v); data.Add(omega_0); data.Add(omega); for (var i = 0; i < c.Count; i++) { var res = (1 + v[i] / c[i]) / Math.Sqrt(1 - Math.Pow(v[i], 2) / Math.Pow(c[i], 2)) * omega_0[i]; omega.Add(res); } if (noiseRatio != null) { var omega_noise = new List(); var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(omega); data.Add(omega_noise); } return data; } } }