#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HEAL.Attic; using HeuristicLab.Analysis; using HeuristicLab.Collections; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Random; using HeuristicLab.Selection; namespace HeuristicLab.Algorithms.ALPS { [Item("ALPS Genetic Algorithm", "A genetic algorithm within an age-layered population structure as described in Gregory S. Hornby. 2006. ALPS: the age-layered population structure for reducing the problem of premature convergence. In Proceedings of the 8th annual conference on Genetic and evolutionary computation (GECCO '06). 815-822.")] [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 160)] [StorableType("4A240A90-EB87-43D1-BD34-99A605B89C4D")] public sealed class AlpsGeneticAlgorithm : HeuristicOptimizationEngineAlgorithm, IStorableContent { public string Filename { get; set; } #region Problem Properties public override Type ProblemType { get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); } } public new ISingleObjectiveHeuristicOptimizationProblem Problem { get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; } set { base.Problem = value; } } #endregion #region Parameter Properties private IValueParameter SeedParameter { get { return (IValueParameter)Parameters["Seed"]; } } private IValueParameter SetSeedRandomlyParameter { get { return (IValueParameter)Parameters["SetSeedRandomly"]; } } private IFixedValueParameter AnalyzerParameter { get { return (IFixedValueParameter)Parameters["Analyzer"]; } } private IFixedValueParameter LayerAnalyzerParameter { get { return (IFixedValueParameter)Parameters["LayerAnalyzer"]; } } private IValueParameter NumberOfLayersParameter { get { return (IValueParameter)Parameters["NumberOfLayers"]; } } private IValueParameter PopulationSizeParameter { get { return (IValueParameter)Parameters["PopulationSize"]; } } public IConstrainedValueParameter SelectorParameter { get { return (IConstrainedValueParameter)Parameters["Selector"]; } } public IConstrainedValueParameter CrossoverParameter { get { return (IConstrainedValueParameter)Parameters["Crossover"]; } } public IConstrainedValueParameter MutatorParameter { get { return (IConstrainedValueParameter)Parameters["Mutator"]; } } private IValueParameter MutationProbabilityParameter { get { return (IValueParameter)Parameters["MutationProbability"]; } } private IValueParameter ElitesParameter { get { return (IValueParameter)Parameters["Elites"]; } } private IFixedValueParameter ReevaluateElitesParameter { get { return (IFixedValueParameter)Parameters["ReevaluateElites"]; } } private IValueParameter PlusSelectionParameter { get { return (IValueParameter)Parameters["PlusSelection"]; } } private IValueParameter> AgingSchemeParameter { get { return (IValueParameter>)Parameters["AgingScheme"]; } } private IValueParameter AgeGapParameter { get { return (IValueParameter)Parameters["AgeGap"]; } } private IValueParameter AgeInheritanceParameter { get { return (IValueParameter)Parameters["AgeInheritance"]; } } private IValueParameter AgeLimitsParameter { get { return (IValueParameter)Parameters["AgeLimits"]; } } private IValueParameter MatingPoolRangeParameter { get { return (IValueParameter)Parameters["MatingPoolRange"]; } } private IValueParameter ReduceToPopulationSizeParameter { get { return (IValueParameter)Parameters["ReduceToPopulationSize"]; } } private IValueParameter TerminatorParameter { get { return (IValueParameter)Parameters["Terminator"]; } } private IConstrainedValueParameter ReinitializationStrategyParameter { get { return (IConstrainedValueParameter)Parameters["ReinitializationStrategy"]; } } #endregion #region Properties public IntValue Seed { get { return SeedParameter.Value; } set { SeedParameter.Value = value; } } public BoolValue SetSeedRandomly { get { return SetSeedRandomlyParameter.Value; } set { SetSeedRandomlyParameter.Value = value; } } public MultiAnalyzer Analyzer { get { return AnalyzerParameter.Value; } } public MultiAnalyzer LayerAnalyzer { get { return LayerAnalyzerParameter.Value; } } public IntValue NumberOfLayers { get { return NumberOfLayersParameter.Value; } set { NumberOfLayersParameter.Value = value; } } public IntValue PopulationSize { get { return PopulationSizeParameter.Value; } set { PopulationSizeParameter.Value = value; } } public ISelector Selector { get { return SelectorParameter.Value; } set { SelectorParameter.Value = value; } } public ICrossover Crossover { get { return CrossoverParameter.Value; } set { CrossoverParameter.Value = value; } } public IManipulator Mutator { get { return MutatorParameter.Value; } set { MutatorParameter.Value = value; } } public PercentValue MutationProbability { get { return MutationProbabilityParameter.Value; } set { MutationProbabilityParameter.Value = value; } } public IntValue Elites { get { return ElitesParameter.Value; } set { ElitesParameter.Value = value; } } public bool ReevaluteElites { get { return ReevaluateElitesParameter.Value.Value; } set { ReevaluateElitesParameter.Value.Value = value; } } public bool PlusSelection { get { return PlusSelectionParameter.Value.Value; } set { PlusSelectionParameter.Value.Value = value; } } public EnumValue AgingScheme { get { return AgingSchemeParameter.Value; } set { AgingSchemeParameter.Value = value; } } public IntValue AgeGap { get { return AgeGapParameter.Value; } set { AgeGapParameter.Value = value; } } public DoubleValue AgeInheritance { get { return AgeInheritanceParameter.Value; } set { AgeInheritanceParameter.Value = value; } } public IntArray AgeLimits { get { return AgeLimitsParameter.Value; } set { AgeLimitsParameter.Value = value; } } public IntValue MatingPoolRange { get { return MatingPoolRangeParameter.Value; } set { MatingPoolRangeParameter.Value = value; } } public MultiTerminator Terminators { get { return TerminatorParameter.Value; } } public int MaximumGenerations { get { return generationsTerminator.Threshold.Value; } set { generationsTerminator.Threshold.Value = value; } } public IReinitializationStrategyController ReinitializationStrategy { get { return ReinitializationStrategyParameter.Value; } set { ReinitializationStrategyParameter.Value = value; } } #endregion #region Helper Properties private SolutionsCreator SolutionsCreator { get { return OperatorGraph.Iterate().OfType().First(); } } private AlpsGeneticAlgorithmMainLoop MainLoop { get { return OperatorGraph.Iterate().OfType().First(); } } #endregion #region Preconfigured Analyzers [Storable] private BestAverageWorstQualityAnalyzer qualityAnalyzer; [Storable] private BestAverageWorstQualityAnalyzer layerQualityAnalyzer; [Storable] private OldestAverageYoungestAgeAnalyzer ageAnalyzer; [Storable] private OldestAverageYoungestAgeAnalyzer layerAgeAnalyzer; [Storable] private AgeDistributionAnalyzer ageDistributionAnalyzer; [Storable] private AgeDistributionAnalyzer layerAgeDistributionAnalyzer; #endregion #region Preconfigured Terminators [Storable] private ComparisonTerminator generationsTerminator; [Storable] private ComparisonTerminator evaluationsTerminator; [Storable] private SingleObjectiveQualityTerminator qualityTerminator; [Storable] private ExecutionTimeTerminator executionTimeTerminator; #endregion #region Constructors [StorableConstructor] private AlpsGeneticAlgorithm(StorableConstructorFlag _) : base(_) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 var optionalMutatorParameter = MutatorParameter as OptionalConstrainedValueParameter; var mutatorParameter = MutatorParameter as ConstrainedValueParameter; if (mutatorParameter == null && optionalMutatorParameter != null) { Parameters.Remove(optionalMutatorParameter); Parameters.Add(new ConstrainedValueParameter("Mutator", "The operator used to mutate solutions.")); foreach (var m in optionalMutatorParameter.ValidValues) MutatorParameter.ValidValues.Add(m); if (optionalMutatorParameter.Value == null) MutationProbability.Value = 0; // to guarantee that the old configuration results in the same behavior else Mutator = optionalMutatorParameter.Value; optionalMutatorParameter.ValidValues.Clear(); // to avoid dangling references to the old parameter its valid values are cleared } #endregion Initialize(); } private AlpsGeneticAlgorithm(AlpsGeneticAlgorithm original, Cloner cloner) : base(original, cloner) { qualityAnalyzer = cloner.Clone(original.qualityAnalyzer); layerQualityAnalyzer = cloner.Clone(original.layerQualityAnalyzer); ageAnalyzer = cloner.Clone(original.ageAnalyzer); layerAgeAnalyzer = cloner.Clone(original.layerAgeAnalyzer); ageDistributionAnalyzer = cloner.Clone(original.ageDistributionAnalyzer); layerAgeDistributionAnalyzer = cloner.Clone(original.layerAgeDistributionAnalyzer); generationsTerminator = cloner.Clone(original.generationsTerminator); evaluationsTerminator = cloner.Clone(original.evaluationsTerminator); qualityTerminator = cloner.Clone(original.qualityTerminator); executionTimeTerminator = cloner.Clone(original.executionTimeTerminator); Initialize(); } public override IDeepCloneable Clone(Cloner cloner) { return new AlpsGeneticAlgorithm(this, cloner); } public AlpsGeneticAlgorithm() : base() { #region Add parameters Parameters.Add(new ValueParameter("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); Parameters.Add(new ValueParameter("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); Parameters.Add(new FixedValueParameter("Analyzer", "The operator used to analyze all individuals from all layers combined.", new MultiAnalyzer())); Parameters.Add(new FixedValueParameter("LayerAnalyzer", "The operator used to analyze each layer.", new MultiAnalyzer())); Parameters.Add(new ValueParameter("NumberOfLayers", "The number of layers.", new IntValue(10))); Parameters.Add(new ValueParameter("PopulationSize", "The size of the population of solutions in each layer.", new IntValue(100))); Parameters.Add(new ConstrainedValueParameter("Selector", "The operator used to select solutions for reproduction.")); Parameters.Add(new ConstrainedValueParameter("Crossover", "The operator used to cross solutions.")); Parameters.Add(new ConstrainedValueParameter("Mutator", "The operator used to mutate solutions.")); Parameters.Add(new ValueParameter("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05))); Parameters.Add(new ValueParameter("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1))); Parameters.Add(new FixedValueParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true }); Parameters.Add(new ValueParameter("PlusSelection", "Include the parents in the selection of the invividuals for the next generation.", new BoolValue(false))); Parameters.Add(new ValueParameter>("AgingScheme", "The aging scheme for setting the age-limits for the layers.", new EnumValue(ALPS.AgingScheme.Polynomial))); Parameters.Add(new ValueParameter("AgeGap", "The frequency of reseeding the lowest layer and scaling factor for the age-limits for the layers.", new IntValue(20))); Parameters.Add(new ValueParameter("AgeInheritance", "A weight that determines the age of a child after crossover based on the older (1.0) and younger (0.0) parent.", new DoubleValue(1.0)) { Hidden = true }); Parameters.Add(new ValueParameter("AgeLimits", "The maximum age an individual is allowed to reach in a certain layer.", new IntArray(new int[0])) { Hidden = true }); Parameters.Add(new ValueParameter("MatingPoolRange", "The range of layers used for creating a mating pool. (1 = current + previous layer)", new IntValue(1)) { Hidden = true }); Parameters.Add(new ValueParameter("ReduceToPopulationSize", "Reduce the CurrentPopulationSize after elder migration to PopulationSize", new BoolValue(true)) { Hidden = true }); Parameters.Add(new ValueParameter("Terminator", "The termination criteria that defines if the algorithm should continue or stop.", new MultiTerminator())); Parameters.Add(new OptionalConstrainedValueParameter("ReinitializationStrategy", "An optional strategy adaption when reseeding the lowest layer.")); #endregion #region Create operators var globalRandomCreator = new RandomCreator(); var layer0Creator = new SubScopesCreator() { Name = "Create Layer Zero" }; var layer0Processor = new SubScopesProcessor(); var localRandomCreator = new LocalRandomCreator(); var layerSolutionsCreator = new SolutionsCreator(); var initializeAgeProcessor = new UniformSubScopesProcessor(); var initializeAge = new VariableCreator() { Name = "Initialize Age" }; var initializeCurrentPopulationSize = new SubScopesCounter() { Name = "Initialize CurrentPopulationCounter" }; var initializeLocalEvaluatedSolutions = new Assigner() { Name = "Initialize LayerEvaluatedSolutions" }; var initializeGlobalEvaluatedSolutions = new DataReducer() { Name = "Initialize EvaluatedSolutions" }; var resultsCollector = new ResultsCollector(); var mainLoop = new AlpsGeneticAlgorithmMainLoop(); #endregion #region Create and parameterize operator graph OperatorGraph.InitialOperator = globalRandomCreator; globalRandomCreator.RandomParameter.ActualName = "GlobalRandom"; globalRandomCreator.SeedParameter.Value = null; globalRandomCreator.SeedParameter.ActualName = SeedParameter.Name; globalRandomCreator.SetSeedRandomlyParameter.Value = null; globalRandomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name; globalRandomCreator.Successor = layer0Creator; layer0Creator.NumberOfSubScopesParameter.Value = new IntValue(1); layer0Creator.Successor = layer0Processor; layer0Processor.Operators.Add(localRandomCreator); layer0Processor.Successor = initializeGlobalEvaluatedSolutions; localRandomCreator.Successor = layerSolutionsCreator; layerSolutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name; layerSolutionsCreator.Successor = initializeAgeProcessor; initializeAgeProcessor.Operator = initializeAge; initializeAgeProcessor.Successor = initializeCurrentPopulationSize; initializeCurrentPopulationSize.ValueParameter.ActualName = "CurrentPopulationSize"; initializeCurrentPopulationSize.Successor = initializeLocalEvaluatedSolutions; initializeAge.CollectedValues.Add(new ValueParameter("Age", new DoubleValue(0))); initializeAge.Successor = null; initializeLocalEvaluatedSolutions.LeftSideParameter.ActualName = "LayerEvaluatedSolutions"; initializeLocalEvaluatedSolutions.RightSideParameter.ActualName = "CurrentPopulationSize"; initializeLocalEvaluatedSolutions.Successor = null; initializeGlobalEvaluatedSolutions.ReductionOperation.Value.Value = ReductionOperations.Sum; initializeGlobalEvaluatedSolutions.TargetOperation.Value.Value = ReductionOperations.Assign; initializeGlobalEvaluatedSolutions.ParameterToReduce.ActualName = "LayerEvaluatedSolutions"; initializeGlobalEvaluatedSolutions.TargetParameter.ActualName = "EvaluatedSolutions"; initializeGlobalEvaluatedSolutions.Successor = resultsCollector; resultsCollector.CollectedValues.Add(new LookupParameter("Evaluated Solutions", null, "EvaluatedSolutions")); resultsCollector.Successor = mainLoop; mainLoop.GlobalRandomParameter.ActualName = "GlobalRandom"; mainLoop.LocalRandomParameter.ActualName = localRandomCreator.LocalRandomParameter.Name; mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions"; mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name; mainLoop.LayerAnalyzerParameter.ActualName = LayerAnalyzerParameter.Name; mainLoop.NumberOfLayersParameter.ActualName = NumberOfLayersParameter.Name; mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name; mainLoop.CurrentPopulationSizeParameter.ActualName = "CurrentPopulationSize"; mainLoop.SelectorParameter.ActualName = SelectorParameter.Name; mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name; mainLoop.MutatorParameter.ActualName = MutatorParameter.Name; mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name; mainLoop.ElitesParameter.ActualName = ElitesParameter.Name; mainLoop.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name; mainLoop.PlusSelectionParameter.ActualName = PlusSelectionParameter.Name; mainLoop.AgeParameter.ActualName = "Age"; mainLoop.AgeGapParameter.ActualName = AgeGapParameter.Name; mainLoop.AgeInheritanceParameter.ActualName = AgeInheritanceParameter.Name; mainLoop.AgeLimitsParameter.ActualName = AgeLimitsParameter.Name; mainLoop.MatingPoolRangeParameter.ActualName = MatingPoolRangeParameter.Name; mainLoop.ReduceToPopulationSizeParameter.ActualName = ReduceToPopulationSizeParameter.Name; mainLoop.TerminatorParameter.ActualName = TerminatorParameter.Name; #endregion #region Set selectors foreach (var selector in ApplicationManager.Manager.GetInstances().Where(s => !(s is IMultiObjectiveSelector)).OrderBy(s => Name)) SelectorParameter.ValidValues.Add(selector); var defaultSelector = SelectorParameter.ValidValues.OfType().FirstOrDefault(); if (defaultSelector != null) { defaultSelector.PressureParameter.Value = new DoubleValue(4.0); SelectorParameter.Value = defaultSelector; } #endregion #region Set strategy adaption foreach (var adaptor in ApplicationManager.Manager.GetInstances().OrderBy(o => o.Name)) ReinitializationStrategyParameter.ValidValues.Add(adaptor); #endregion #region Create analyzers qualityAnalyzer = new BestAverageWorstQualityAnalyzer(); layerQualityAnalyzer = new BestAverageWorstQualityAnalyzer(); ageAnalyzer = new OldestAverageYoungestAgeAnalyzer(); layerAgeAnalyzer = new OldestAverageYoungestAgeAnalyzer(); ageDistributionAnalyzer = new AgeDistributionAnalyzer(); layerAgeDistributionAnalyzer = new AgeDistributionAnalyzer(); #endregion #region Create terminators generationsTerminator = new ComparisonTerminator("Generations", ComparisonType.Less, new IntValue(1000)) { Name = "Generations" }; evaluationsTerminator = new ComparisonTerminator("EvaluatedSolutions", ComparisonType.Less, new IntValue(int.MaxValue)) { Name = "Evaluations" }; qualityTerminator = new SingleObjectiveQualityTerminator() { Name = "Quality" }; executionTimeTerminator = new ExecutionTimeTerminator(this, new TimeSpanValue(TimeSpan.FromMinutes(5))); #endregion #region Parameterize UpdateAnalyzers(); ParameterizeAnalyzers(); ParameterizeSelectors(); UpdateTerminators(); ParameterizeAgeLimits(); #endregion Initialize(); } #endregion #region Events public override void Prepare() { if (Problem != null) base.Prepare(); } protected override void OnProblemChanged() { base.OnProblemChanged(); ParameterizeStochasticOperator(Problem.SolutionCreator); foreach (var @operator in Problem.Operators.OfType()) ParameterizeStochasticOperator(@operator); ParameterizeStochasticOperatorForLayer(Problem.Evaluator); ParameterizeIterationBasedOperators(); ParameterizeSolutionsCreator(); ParameterizeMainLoop(); ParameterizeAnalyzers(); ParameterizeSelectors(); ParameterizeTerminators(); Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged; UpdateAnalyzers(); UpdateCrossovers(); UpdateMutators(); UpdateTerminators(); } protected override void RegisterProblemEvents() { base.RegisterProblemEvents(); var maximizationParameter = (IValueParameter)Problem.MaximizationParameter; if (maximizationParameter != null) maximizationParameter.ValueChanged += new EventHandler(MaximizationParameter_ValueChanged); } protected override void DeregisterProblemEvents() { var maximizationParameter = (IValueParameter)Problem.MaximizationParameter; if (maximizationParameter != null) maximizationParameter.ValueChanged -= new EventHandler(MaximizationParameter_ValueChanged); base.DeregisterProblemEvents(); } protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) { base.Problem_SolutionCreatorChanged(sender, e); ParameterizeStochasticOperator(Problem.SolutionCreator); Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged; ParameterizeSolutionsCreator(); ParameterizeAnalyzers(); } protected override void Problem_EvaluatorChanged(object sender, EventArgs e) { base.Problem_EvaluatorChanged(sender, e); ParameterizeStochasticOperatorForLayer(Problem.Evaluator); UpdateAnalyzers(); ParameterizeSolutionsCreator(); ParameterizeMainLoop(); ParameterizeSelectors(); } protected override void Problem_OperatorsChanged(object sender, EventArgs e) { base.Problem_OperatorsChanged(sender, e); foreach (IOperator op in Problem.Operators.OfType()) ParameterizeStochasticOperator(op); ParameterizeStochasticOperatorForLayer(Problem.Evaluator); ParameterizeIterationBasedOperators(); UpdateCrossovers(); UpdateMutators(); UpdateTerminators(); } private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) { ParameterizeMainLoop(); ParameterizeAnalyzers(); ParameterizeSelectors(); } private void MaximizationParameter_ValueChanged(object sender, EventArgs e) { ParameterizeTerminators(); } private void QualityAnalyzer_CurrentBestQualityParameter_NameChanged(object sender, EventArgs e) { ParameterizeTerminators(); } private void AgeGapParameter_ValueChanged(object sender, EventArgs e) { AgeGap.ValueChanged += AgeGap_ValueChanged; ParameterizeAgeLimits(); } private void AgeGap_ValueChanged(object sender, EventArgs e) { ParameterizeAgeLimits(); } private void AgingSchemeParameter_ValueChanged(object sender, EventArgs e) { AgingScheme.ValueChanged += AgingScheme_ValueChanged; ParameterizeAgeLimits(); } private void AgingScheme_ValueChanged(object sender, EventArgs e) { ParameterizeAgeLimits(); } private void NumberOfLayersParameter_ValueChanged(object sender, EventArgs e) { NumberOfLayers.ValueChanged += NumberOfLayers_ValueChanged; ParameterizeAgeLimits(); } private void NumberOfLayers_ValueChanged(object sender, EventArgs e) { ParameterizeAgeLimits(); } private void AnalyzerOperators_ItemsAdded(object sender, CollectionItemsChangedEventArgs> e) { foreach (var analyzer in e.Items) { foreach (var parameter in analyzer.Value.Parameters.OfType()) { parameter.Depth = 2; } } } private void LayerAnalyzerOperators_ItemsAdded(object sender, CollectionItemsChangedEventArgs> e) { foreach (var analyzer in e.Items) { IParameter resultParameter; if (analyzer.Value.Parameters.TryGetValue("Results", out resultParameter)) { var lookupParameter = resultParameter as ILookupParameter; if (lookupParameter != null) lookupParameter.ActualName = "LayerResults"; } foreach (var parameter in analyzer.Value.Parameters.OfType()) { parameter.Depth = 1; } } } #endregion #region Parameterization private void Initialize() { if (Problem != null) Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged; NumberOfLayersParameter.ValueChanged += NumberOfLayersParameter_ValueChanged; NumberOfLayers.ValueChanged += NumberOfLayers_ValueChanged; Analyzer.Operators.ItemsAdded += AnalyzerOperators_ItemsAdded; LayerAnalyzer.Operators.ItemsAdded += LayerAnalyzerOperators_ItemsAdded; AgeGapParameter.ValueChanged += AgeGapParameter_ValueChanged; AgeGap.ValueChanged += AgeGap_ValueChanged; AgingSchemeParameter.ValueChanged += AgingSchemeParameter_ValueChanged; AgingScheme.ValueChanged += AgingScheme_ValueChanged; qualityAnalyzer.CurrentBestQualityParameter.NameChanged += new EventHandler(QualityAnalyzer_CurrentBestQualityParameter_NameChanged); } private void ParameterizeSolutionsCreator() { SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name; SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name; } private void ParameterizeMainLoop() { MainLoop.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name; MainLoop.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; MainLoop.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; } private void ParameterizeAnalyzers() { qualityAnalyzer.ResultsParameter.ActualName = "Results"; qualityAnalyzer.ResultsParameter.Hidden = true; qualityAnalyzer.QualityParameter.Depth = 2; layerQualityAnalyzer.ResultsParameter.ActualName = "LayerResults"; layerQualityAnalyzer.ResultsParameter.Hidden = true; layerQualityAnalyzer.QualityParameter.Depth = 1; if (Problem != null) { qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; qualityAnalyzer.MaximizationParameter.Hidden = true; qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; qualityAnalyzer.QualityParameter.Hidden = true; qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name; qualityAnalyzer.BestKnownQualityParameter.Hidden = true; layerQualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; layerQualityAnalyzer.MaximizationParameter.Hidden = true; layerQualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; layerQualityAnalyzer.QualityParameter.Hidden = true; layerQualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name; layerQualityAnalyzer.BestKnownQualityParameter.Hidden = true; } } private void ParameterizeSelectors() { foreach (var selector in SelectorParameter.ValidValues) { selector.CopySelected = new BoolValue(true); selector.NumberOfSelectedSubScopesParameter.Hidden = true; ParameterizeStochasticOperatorForLayer(selector); } if (Problem != null) { foreach (var selector in SelectorParameter.ValidValues.OfType()) { selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; selector.MaximizationParameter.Hidden = true; selector.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; selector.QualityParameter.Hidden = true; } } } private void ParameterizeTerminators() { qualityTerminator.Parameterize(qualityAnalyzer.CurrentBestQualityParameter, Problem); } private void ParameterizeIterationBasedOperators() { if (Problem != null) { foreach (var @operator in Problem.Operators.OfType()) { @operator.IterationsParameter.ActualName = "Generations"; @operator.IterationsParameter.Hidden = true; @operator.MaximumIterationsParameter.ActualName = generationsTerminator.ThresholdParameter.Name; @operator.MaximumIterationsParameter.Hidden = true; } } } private void ParameterizeAgeLimits() { var scheme = AgingScheme.Value; int ageGap = AgeGap.Value; int numberOfLayers = NumberOfLayers.Value; AgeLimits = scheme.CalculateAgeLimits(ageGap, numberOfLayers); } private void ParameterizeStochasticOperator(IOperator @operator) { var stochasticOperator = @operator as IStochasticOperator; if (stochasticOperator != null) { stochasticOperator.RandomParameter.ActualName = "GlobalRandom"; stochasticOperator.RandomParameter.Hidden = true; } } private void ParameterizeStochasticOperatorForLayer(IOperator @operator) { var stochasticOperator = @operator as IStochasticOperator; if (stochasticOperator != null) { stochasticOperator.RandomParameter.ActualName = "LocalRandom"; stochasticOperator.RandomParameter.Hidden = true; } } #endregion #region Updates private void UpdateAnalyzers() { Analyzer.Operators.Clear(); LayerAnalyzer.Operators.Clear(); Analyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault); Analyzer.Operators.Add(ageAnalyzer, ageAnalyzer.EnabledByDefault); Analyzer.Operators.Add(ageDistributionAnalyzer, ageDistributionAnalyzer.EnabledByDefault); LayerAnalyzer.Operators.Add(layerQualityAnalyzer, false); LayerAnalyzer.Operators.Add(layerAgeAnalyzer, false); LayerAnalyzer.Operators.Add(layerAgeDistributionAnalyzer, false); if (Problem != null) { foreach (var analyzer in Problem.Operators.OfType()) { Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault); LayerAnalyzer.Operators.Add((IAnalyzer)analyzer.Clone(), false); } } } private void UpdateCrossovers() { var oldCrossover = CrossoverParameter.Value; var defaultCrossover = Problem.Operators.OfType().FirstOrDefault(); CrossoverParameter.ValidValues.Clear(); foreach (var crossover in Problem.Operators.OfType().OrderBy(c => c.Name)) { ParameterizeStochasticOperatorForLayer(crossover); CrossoverParameter.ValidValues.Add(crossover); } if (oldCrossover != null) { var crossover = CrossoverParameter.ValidValues.FirstOrDefault(c => c.GetType() == oldCrossover.GetType()); if (crossover != null) CrossoverParameter.Value = crossover; else oldCrossover = null; } if (oldCrossover == null && defaultCrossover != null) CrossoverParameter.Value = defaultCrossover; } private void UpdateMutators() { IManipulator oldMutator = MutatorParameter.Value; MutatorParameter.ValidValues.Clear(); IManipulator defaultMutator = Problem.Operators.OfType().FirstOrDefault(); foreach (IManipulator mutator in Problem.Operators.OfType().OrderBy(x => x.Name)) { ParameterizeStochasticOperatorForLayer(mutator); MutatorParameter.ValidValues.Add(mutator); } if (oldMutator != null) { IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType()); if (mutator != null) MutatorParameter.Value = mutator; else oldMutator = null; } if (oldMutator == null && defaultMutator != null) MutatorParameter.Value = defaultMutator; } private void UpdateTerminators() { var newTerminators = new Dictionary { {generationsTerminator, !Terminators.Operators.Contains(generationsTerminator) || Terminators.Operators.ItemChecked(generationsTerminator)}, {evaluationsTerminator, Terminators.Operators.Contains(evaluationsTerminator) && Terminators.Operators.ItemChecked(evaluationsTerminator)}, {qualityTerminator, Terminators.Operators.Contains(qualityTerminator) && Terminators.Operators.ItemChecked(qualityTerminator) }, {executionTimeTerminator, Terminators.Operators.Contains(executionTimeTerminator) && Terminators.Operators.ItemChecked(executionTimeTerminator)} }; if (Problem != null) { foreach (var terminator in Problem.Operators.OfType()) newTerminators.Add(terminator, !Terminators.Operators.Contains(terminator) || Terminators.Operators.ItemChecked(terminator)); } Terminators.Operators.Clear(); foreach (var newTerminator in newTerminators) Terminators.Operators.Add(newTerminator.Key, newTerminator.Value); } #endregion } }