1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HEAL.Attic;
|
---|
5 | using HeuristicLab.Common;
|
---|
6 | using HeuristicLab.Core;
|
---|
7 | using HeuristicLab.Data;
|
---|
8 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
9 | using HeuristicLab.Parameters;
|
---|
10 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
11 |
|
---|
12 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
13 | [Item("Constraints Evaluator", "Calculates NMSE of a symbolic regression solution with respect to constraints.")]
|
---|
14 | [StorableType("27473973-DD8D-4375-997D-942E2280AE8E")]
|
---|
15 | public class SymbolicRegressionSingleObjectiveConstraintEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
16 | #region Parameter/Properties
|
---|
17 |
|
---|
18 | private const string UseConstantOptimizationParameterName = "Use Constant Optimization";
|
---|
19 |
|
---|
20 | private const string ConstantOptimizationIterationsParameterName = "Constant Optimization Iterations";
|
---|
21 |
|
---|
22 | private const string UseSoftConstraintsParameterName = "Use Soft Constraints Evaluation";
|
---|
23 |
|
---|
24 | private const string BoundsEstimatorParameterName = "Bounds estimator";
|
---|
25 |
|
---|
26 | private const string MaximumPenaltyFactorParamterName = "Maximum Penalty Factor";
|
---|
27 |
|
---|
28 |
|
---|
29 | public IFixedValueParameter<BoolValue> UseConstantOptimizationParameter =>
|
---|
30 | (IFixedValueParameter<BoolValue>)Parameters[UseConstantOptimizationParameterName];
|
---|
31 |
|
---|
32 | public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter =>
|
---|
33 | (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName];
|
---|
34 |
|
---|
35 | public IFixedValueParameter<BoolValue> UseSoftConstraintsParameter =>
|
---|
36 | (IFixedValueParameter<BoolValue>)Parameters[UseSoftConstraintsParameterName];
|
---|
37 |
|
---|
38 | public IValueParameter<IBoundsEstimator> BoundsEstimatorParameter =>
|
---|
39 | (IValueParameter<IBoundsEstimator>)Parameters[BoundsEstimatorParameterName];
|
---|
40 | public IFixedValueParameter<DoubleValue> MaximumPenaltyFactorParamter =>
|
---|
41 | (IFixedValueParameter<DoubleValue>)Parameters[MaximumPenaltyFactorParamterName];
|
---|
42 |
|
---|
43 | public bool UseConstantOptimization {
|
---|
44 | get => UseConstantOptimizationParameter.Value.Value;
|
---|
45 | set => UseConstantOptimizationParameter.Value.Value = value;
|
---|
46 | }
|
---|
47 |
|
---|
48 | public int ConstantOptimizationIterations {
|
---|
49 | get => ConstantOptimizationIterationsParameter.Value.Value;
|
---|
50 | set => ConstantOptimizationIterationsParameter.Value.Value = value;
|
---|
51 | }
|
---|
52 |
|
---|
53 | public bool UseSoftConstraints {
|
---|
54 | get => UseSoftConstraintsParameter.Value.Value;
|
---|
55 | set => UseSoftConstraintsParameter.Value.Value = value;
|
---|
56 | }
|
---|
57 |
|
---|
58 | public double PenaltyMultiplier {
|
---|
59 | get => 1.0;//PenaltyMultiplierParameter.Value.Value;
|
---|
60 | //set => PenaltyMultiplierParameter.Value.Value = value;
|
---|
61 | }
|
---|
62 |
|
---|
63 | public IBoundsEstimator BoundsEstimator {
|
---|
64 | get => BoundsEstimatorParameter.Value;
|
---|
65 | set => BoundsEstimatorParameter.Value = value;
|
---|
66 | }
|
---|
67 |
|
---|
68 | public double MaximumPenaltyFactor {
|
---|
69 | get => MaximumPenaltyFactorParamter.Value.Value;
|
---|
70 | set => MaximumPenaltyFactorParamter.Value.Value = value;
|
---|
71 | }
|
---|
72 |
|
---|
73 |
|
---|
74 | //Use false for maximization, because we try to minimize the NMSE
|
---|
75 | public override bool Maximization => false;
|
---|
76 |
|
---|
77 | #endregion
|
---|
78 |
|
---|
79 | #region Constructors/Cloning
|
---|
80 |
|
---|
81 | [StorableConstructor]
|
---|
82 | protected SymbolicRegressionSingleObjectiveConstraintEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
83 |
|
---|
84 | protected SymbolicRegressionSingleObjectiveConstraintEvaluator(
|
---|
85 | SymbolicRegressionSingleObjectiveConstraintEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
86 |
|
---|
87 | public SymbolicRegressionSingleObjectiveConstraintEvaluator() {
|
---|
88 | Parameters.Add(new FixedValueParameter<BoolValue>(UseConstantOptimizationParameterName,
|
---|
89 | "Define whether constant optimization is active or not.", new BoolValue(false)));
|
---|
90 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName,
|
---|
91 | "Define how many constant optimization steps should be performed.", new IntValue(10)));
|
---|
92 | Parameters.Add(new FixedValueParameter<BoolValue>(UseSoftConstraintsParameterName,
|
---|
93 | "Define whether the constraints are penalized by soft or hard constraints.", new BoolValue(false)));
|
---|
94 | Parameters.Add(new ValueParameter<IBoundsEstimator>(BoundsEstimatorParameterName,
|
---|
95 | "Select the Boundsestimator.", new IntervalArithBoundsEstimator()));
|
---|
96 | Parameters.Add(new FixedValueParameter<DoubleValue>(MaximumPenaltyFactorParamterName,
|
---|
97 | "Specify how hard constraints violations should be punished", new DoubleValue(1.5)));
|
---|
98 | }
|
---|
99 |
|
---|
100 | [StorableHook(HookType.AfterDeserialization)]
|
---|
101 | private void AfterDeserialization() {
|
---|
102 | if (!Parameters.ContainsKey(UseConstantOptimizationParameterName)) {
|
---|
103 | Parameters.Add(new FixedValueParameter<BoolValue>(UseConstantOptimizationParameterName,
|
---|
104 | "Define whether constant optimization is active or not.", new BoolValue(false)));
|
---|
105 | }
|
---|
106 |
|
---|
107 | if (!Parameters.ContainsKey(ConstantOptimizationIterationsParameterName)) {
|
---|
108 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName,
|
---|
109 | "Define how many constant optimization steps should be performed.", new IntValue(10)));
|
---|
110 | }
|
---|
111 |
|
---|
112 | if (!Parameters.ContainsKey(UseSoftConstraintsParameterName)) {
|
---|
113 | Parameters.Add(new FixedValueParameter<BoolValue>(UseSoftConstraintsParameterName,
|
---|
114 | "Define whether the constraints are penalized by soft or hard constraints.", new BoolValue(false)));
|
---|
115 | }
|
---|
116 |
|
---|
117 | if (!Parameters.ContainsKey(BoundsEstimatorParameterName))
|
---|
118 | Parameters.Add(new ValueParameter<IBoundsEstimator>(BoundsEstimatorParameterName,
|
---|
119 | "Select the Boundsestimator.", new IntervalArithBoundsEstimator()));
|
---|
120 |
|
---|
121 | if (!Parameters.ContainsKey(MaximumPenaltyFactorParamterName)) {
|
---|
122 | Parameters.Add(new FixedValueParameter<DoubleValue>(MaximumPenaltyFactorParamterName,
|
---|
123 | "Specify how hard constraints violations should be punished", new DoubleValue(1.5)));
|
---|
124 | }
|
---|
125 | }
|
---|
126 |
|
---|
127 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
128 | return new SymbolicRegressionSingleObjectiveConstraintEvaluator(this, cloner);
|
---|
129 | }
|
---|
130 |
|
---|
131 | #endregion
|
---|
132 |
|
---|
133 | public override IOperation InstrumentedApply() {
|
---|
134 | var rows = GenerateRowsToEvaluate();
|
---|
135 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
136 | var problemData = ProblemDataParameter.ActualValue;
|
---|
137 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
138 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
139 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
140 |
|
---|
141 | if (UseConstantOptimization) {
|
---|
142 | SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows,
|
---|
143 | false, ConstantOptimizationIterations, true,
|
---|
144 | estimationLimits.Lower, estimationLimits.Upper);
|
---|
145 | } else {
|
---|
146 | if (applyLinearScaling) {
|
---|
147 | //Check for interval arithmetic grammar
|
---|
148 | //remove scaling nodes for linear scaling evaluation
|
---|
149 | var rootNode = new ProgramRootSymbol().CreateTreeNode();
|
---|
150 | var startNode = new StartSymbol().CreateTreeNode();
|
---|
151 | SymbolicExpressionTree newTree = null;
|
---|
152 | foreach (var node in solution.IterateNodesPrefix())
|
---|
153 | if (node.Symbol.Name == "Scaling") {
|
---|
154 | for (var i = 0; i < node.SubtreeCount; ++i) startNode.AddSubtree(node.GetSubtree(i));
|
---|
155 | rootNode.AddSubtree(startNode);
|
---|
156 | newTree = new SymbolicExpressionTree(rootNode);
|
---|
157 | break;
|
---|
158 | }
|
---|
159 |
|
---|
160 | //calculate alpha and beta for scaling
|
---|
161 | var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(newTree, problemData.Dataset, rows);
|
---|
162 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
163 | OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out var alpha, out var beta,
|
---|
164 | out var errorState);
|
---|
165 | //Set alpha and beta to the scaling nodes from ia grammar
|
---|
166 | foreach (var node in solution.IterateNodesPrefix())
|
---|
167 | if (node.Symbol.Name == "Offset") {
|
---|
168 | node.RemoveSubtree(1);
|
---|
169 | var alphaNode = new ConstantTreeNode(new Constant()) { Value = alpha };
|
---|
170 | node.AddSubtree(alphaNode);
|
---|
171 | } else if (node.Symbol.Name == "Scaling") {
|
---|
172 | node.RemoveSubtree(1);
|
---|
173 | var betaNode = new ConstantTreeNode(new Constant()) { Value = beta };
|
---|
174 | node.AddSubtree(betaNode);
|
---|
175 | }
|
---|
176 | }
|
---|
177 | }
|
---|
178 |
|
---|
179 | var quality = Calculate(interpreter, solution, estimationLimits.Lower, estimationLimits.Upper, problemData, rows,
|
---|
180 | PenaltyMultiplier, BoundsEstimator, UseSoftConstraints, MaximumPenaltyFactor);
|
---|
181 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
182 |
|
---|
183 | return base.InstrumentedApply();
|
---|
184 | }
|
---|
185 |
|
---|
186 | public static double Calculate(
|
---|
187 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
188 | ISymbolicExpressionTree solution, double lowerEstimationLimit,
|
---|
189 | double upperEstimationLimit,
|
---|
190 | IRegressionProblemData problemData, IEnumerable<int> rows,
|
---|
191 | double penaltyMultiplier, IBoundsEstimator estimator,
|
---|
192 | bool useSoftConstraints, double maximumPenaltyFactor) {
|
---|
193 |
|
---|
194 | var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
195 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
196 | var constraints = problemData.ShapeConstraints.EnabledConstraints;
|
---|
197 | var intervalCollection = problemData.VariableRanges;
|
---|
198 |
|
---|
199 | var boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
200 | var nmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues,
|
---|
201 | out var errorState);
|
---|
202 |
|
---|
203 | if (errorState != OnlineCalculatorError.None) {
|
---|
204 | return 1.0;
|
---|
205 | }
|
---|
206 |
|
---|
207 | var constraintResults = IntervalUtil.GetConstraintViolations(constraints, estimator, intervalCollection, solution);
|
---|
208 |
|
---|
209 | if (constraintResults.Any(x => double.IsNaN(x) || double.IsInfinity(x))) {
|
---|
210 | return 1.0;
|
---|
211 | }
|
---|
212 |
|
---|
213 |
|
---|
214 | if (useSoftConstraints) {
|
---|
215 | if (maximumPenaltyFactor < 0.0)
|
---|
216 | throw new ArgumentException("The parameter has to be greater or equal 0.0!", nameof(maximumPenaltyFactor));
|
---|
217 |
|
---|
218 | var zip = constraints.Zip(constraintResults, (c, e) => new { Constraint = c, Error = e });
|
---|
219 | double sum = 0.0;
|
---|
220 |
|
---|
221 | foreach (var x in zip) {
|
---|
222 | if (x.Constraint.Weight <= 0)
|
---|
223 | throw new ArgumentException("Constraint weights <= 0 are not allowed!");
|
---|
224 |
|
---|
225 | double e = x.Error / x.Constraint.Weight;
|
---|
226 |
|
---|
227 | e = double.IsNaN(e) ? 0.0 : e;
|
---|
228 | e = e > 1.0 ? 1.0 : e;
|
---|
229 |
|
---|
230 | sum += Math.Sqrt(e) * maximumPenaltyFactor;
|
---|
231 | }
|
---|
232 |
|
---|
233 | double avgError = sum / zip.Count();
|
---|
234 | nmse = nmse * avgError + nmse;
|
---|
235 | nmse = Math.Min(1.0, nmse);
|
---|
236 | } else if (constraintResults.Any(x => x != 0.0)) {
|
---|
237 | nmse = 1.0;
|
---|
238 | }
|
---|
239 |
|
---|
240 | return nmse;
|
---|
241 | }
|
---|
242 |
|
---|
243 | public override double Evaluate(
|
---|
244 | IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData,
|
---|
245 | IEnumerable<int> rows) {
|
---|
246 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
247 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
248 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
249 |
|
---|
250 | var nmse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree,
|
---|
251 | EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper,
|
---|
252 | problemData, rows, PenaltyMultiplier, BoundsEstimator, UseSoftConstraints, MaximumPenaltyFactor);
|
---|
253 |
|
---|
254 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
255 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
256 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
257 |
|
---|
258 | return nmse;
|
---|
259 | }
|
---|
260 | }
|
---|
261 | } |
---|