using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman82 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman82() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman82(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman82(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "II.36.38 mom*B/(kb*T)+(mom*alpha*M)/(epsilon*c**2*kb*T) | {0} samples | noise ({1})", trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); } } protected override string TargetVariable { get { return noiseRatio == null ? "f" : "f_noise"; } } protected override string[] VariableNames { get { return new[] {"mom", "B", "kb", "T", "alpha", "epsilon", "c", "M", noiseRatio == null ? "f" : "f_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"mom", "B", "kb", "T", "alpha", "epsilon", "c", "M"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var mom = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var B = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var kb = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var T = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var M = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var f = new List(); data.Add(mom); data.Add(B); data.Add(kb); data.Add(T); data.Add(alpha); data.Add(epsilon); data.Add(c); data.Add(M); data.Add(f); for (var i = 0; i < mom.Count; i++) { var res = mom[i] * B[i] / (kb[i] * T[i]) + mom[i] * alpha[i] * M[i] / (epsilon[i] * Math.Pow(c[i], 2) * kb[i] * T[i]); f.Add(res); } if (noiseRatio != null) { var f_noise = new List(); var sigma_noise = (double) noiseRatio * f.StandardDeviationPop(); f_noise.AddRange(f.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(f); data.Add(f_noise); } return data; } } }