using HEAL.Attic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace HeuristicLab.Algorithms.OESRALPS.Analyzers.Regression { [Item("SymbolicRegressionSingleObjectiveTrainingBestSolutionSlidingWindowAnalyzer", "An operator that analyzes the training best symbolic regression solution for single objective symbolic regression problems.")] [StorableType("85786F8E-A81D-4909-9A66-620669A0C7FB")] public sealed class SymbolicRegressionSingleObjectiveTrainingBestSolutionSlidingWindowAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionSlidingWindowAnalyzer, ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator { private const string ProblemDataParameterName = "ProblemData"; private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter"; private const string EstimationLimitsParameterName = "EstimationLimits"; #region parameter properties public IValueLookupParameter EstimationLimitsParameter { get { return (IValueLookupParameter)Parameters[EstimationLimitsParameterName]; } } #endregion [StorableConstructor] private SymbolicRegressionSingleObjectiveTrainingBestSolutionSlidingWindowAnalyzer(StorableConstructorFlag _) : base(_) { } private SymbolicRegressionSingleObjectiveTrainingBestSolutionSlidingWindowAnalyzer(SymbolicRegressionSingleObjectiveTrainingBestSolutionSlidingWindowAnalyzer original, Cloner cloner) : base(original, cloner) { } public SymbolicRegressionSingleObjectiveTrainingBestSolutionSlidingWindowAnalyzer() : base() { Parameters.Add(new ValueLookupParameter(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model.")); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionSingleObjectiveTrainingBestSolutionSlidingWindowAnalyzer(this, cloner); } protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); } } }