#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HEAL.Attic; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis { [StorableType("768AFEDB-5641-429E-85A1-A0BE8DFDD56F")] [Item("ClassificationSolution Impacts Calculator", "Calculation of the impacts of input variables for any classification solution")] public sealed class ClassificationSolutionVariableImpactsCalculator : ParameterizedNamedItem { #region Parameters/Properties [StorableType("e6cd2226-10cd-4765-ae1a-924e316b6aac")] public enum ReplacementMethodEnum { Median, Average, Shuffle, Noise } [StorableType("84d84ccf-5d6d-432f-a946-eb499935e5c8")] public enum FactorReplacementMethodEnum { Best, Mode, Shuffle } [StorableType("70f30113-df01-41b4-9e3b-2982035de498")] public enum DataPartitionEnum { Training, Test, All } private const string ReplacementParameterName = "Replacement Method"; private const string FactorReplacementParameterName = "Factor Replacement Method"; private const string DataPartitionParameterName = "DataPartition"; public IFixedValueParameter> ReplacementParameter { get { return (IFixedValueParameter>)Parameters[ReplacementParameterName]; } } public IFixedValueParameter> FactorReplacementParameter { get { return (IFixedValueParameter>)Parameters[FactorReplacementParameterName]; } } public IFixedValueParameter> DataPartitionParameter { get { return (IFixedValueParameter>)Parameters[DataPartitionParameterName]; } } public ReplacementMethodEnum ReplacementMethod { get { return ReplacementParameter.Value.Value; } set { ReplacementParameter.Value.Value = value; } } public FactorReplacementMethodEnum FactorReplacementMethod { get { return FactorReplacementParameter.Value.Value; } set { FactorReplacementParameter.Value.Value = value; } } public DataPartitionEnum DataPartition { get { return DataPartitionParameter.Value.Value; } set { DataPartitionParameter.Value.Value = value; } } #endregion #region Ctor/Cloner [StorableConstructor] private ClassificationSolutionVariableImpactsCalculator(StorableConstructorFlag _) : base(_) { } private ClassificationSolutionVariableImpactsCalculator(ClassificationSolutionVariableImpactsCalculator original, Cloner cloner) : base(original, cloner) { } public ClassificationSolutionVariableImpactsCalculator() : base() { Parameters.Add(new FixedValueParameter>(ReplacementParameterName, "The replacement method for variables during impact calculation.", new EnumValue(ReplacementMethodEnum.Shuffle))); Parameters.Add(new FixedValueParameter>(FactorReplacementParameterName, "The replacement method for factor variables during impact calculation.", new EnumValue(FactorReplacementMethodEnum.Best))); Parameters.Add(new FixedValueParameter>(DataPartitionParameterName, "The data partition on which the impacts are calculated.", new EnumValue(DataPartitionEnum.Training))); } public override IDeepCloneable Clone(Cloner cloner) { return new ClassificationSolutionVariableImpactsCalculator(this, cloner); } #endregion //mkommend: annoying name clash with static method, open to better naming suggestions public IEnumerable> Calculate(IClassificationSolution solution) { return CalculateImpacts(solution, ReplacementMethod, FactorReplacementMethod, DataPartition); } public static IEnumerable> CalculateImpacts( IClassificationSolution solution, ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle, FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best, DataPartitionEnum dataPartition = DataPartitionEnum.Training) { IEnumerable rows = GetPartitionRows(dataPartition, solution.ProblemData); IEnumerable estimatedClassValues = solution.GetEstimatedClassValues(rows); var model = (IClassificationModel)solution.Model.Clone(); //mkommend: clone of model is necessary, because the thresholds for IDiscriminantClassificationModels are updated return CalculateImpacts(model, solution.ProblemData, estimatedClassValues, rows, replacementMethod, factorReplacementMethod); } public static IEnumerable> CalculateImpacts( IClassificationModel model, IClassificationProblemData problemData, IEnumerable estimatedClassValues, IEnumerable rows, ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle, FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) { //fholzing: try and catch in case a different dataset is loaded, otherwise statement is neglectable var missingVariables = model.VariablesUsedForPrediction.Except(problemData.Dataset.VariableNames); if (missingVariables.Any()) { throw new InvalidOperationException(string.Format("Can not calculate variable impacts, because the model uses inputs missing in the dataset ({0})", string.Join(", ", missingVariables))); } IEnumerable targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); var originalQuality = CalculateQuality(targetValues, estimatedClassValues); var impacts = new Dictionary(); var inputvariables = new HashSet(problemData.AllowedInputVariables.Union(model.VariablesUsedForPrediction)); var modifiableDataset = ((Dataset)(problemData.Dataset).Clone()).ToModifiable(); foreach (var inputVariable in inputvariables) { impacts[inputVariable] = CalculateImpact(inputVariable, model, problemData, modifiableDataset, rows, replacementMethod, factorReplacementMethod, targetValues, originalQuality); } return impacts.Select(i => Tuple.Create(i.Key, i.Value)); } public static double CalculateImpact(string variableName, IClassificationModel model, IClassificationProblemData problemData, ModifiableDataset modifiableDataset, IEnumerable rows, ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle, FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best, IEnumerable targetValues = null, double quality = double.NaN) { if (!model.VariablesUsedForPrediction.Contains(variableName)) { return 0.0; } if (!problemData.Dataset.VariableNames.Contains(variableName)) { throw new InvalidOperationException(string.Format("Can not calculate variable impact, because the model uses inputs missing in the dataset ({0})", variableName)); } if (targetValues == null) { targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); } if (quality == double.NaN) { quality = CalculateQuality(model.GetEstimatedClassValues(modifiableDataset, rows), targetValues); } IList originalValues = null; IList replacementValues = GetReplacementValues(modifiableDataset, variableName, model, rows, targetValues, out originalValues, replacementMethod, factorReplacementMethod); double newValue = CalculateQualityForReplacement(model, modifiableDataset, variableName, originalValues, rows, replacementValues, targetValues); double impact = quality - newValue; return impact; } private static IList GetReplacementValues(ModifiableDataset modifiableDataset, string variableName, IClassificationModel model, IEnumerable rows, IEnumerable targetValues, out IList originalValues, ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle, FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) { IList replacementValues = null; if (modifiableDataset.VariableHasType(variableName)) { originalValues = modifiableDataset.GetReadOnlyDoubleValues(variableName).ToList(); replacementValues = GetReplacementValuesForDouble(modifiableDataset, rows, (List)originalValues, replacementMethod); } else if (modifiableDataset.VariableHasType(variableName)) { originalValues = modifiableDataset.GetReadOnlyStringValues(variableName).ToList(); replacementValues = GetReplacementValuesForString(model, modifiableDataset, variableName, rows, (List)originalValues, targetValues, factorReplacementMethod); } else { throw new NotSupportedException("Variable not supported"); } return replacementValues; } private static IList GetReplacementValuesForDouble(ModifiableDataset modifiableDataset, IEnumerable rows, List originalValues, ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle) { IRandom random = new FastRandom(31415); List replacementValues; double replacementValue; switch (replacementMethod) { case ReplacementMethodEnum.Median: replacementValue = rows.Select(r => originalValues[r]).Median(); replacementValues = Enumerable.Repeat(replacementValue, modifiableDataset.Rows).ToList(); break; case ReplacementMethodEnum.Average: replacementValue = rows.Select(r => originalValues[r]).Average(); replacementValues = Enumerable.Repeat(replacementValue, modifiableDataset.Rows).ToList(); break; case ReplacementMethodEnum.Shuffle: // new var has same empirical distribution but the relation to y is broken // prepare a complete column for the dataset replacementValues = Enumerable.Repeat(double.NaN, modifiableDataset.Rows).ToList(); // shuffle only the selected rows var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(random).ToList(); int i = 0; // update column values foreach (var r in rows) { replacementValues[r] = shuffledValues[i++]; } break; case ReplacementMethodEnum.Noise: var avg = rows.Select(r => originalValues[r]).Average(); var stdDev = rows.Select(r => originalValues[r]).StandardDeviation(); // prepare a complete column for the dataset replacementValues = Enumerable.Repeat(double.NaN, modifiableDataset.Rows).ToList(); // update column values foreach (var r in rows) { replacementValues[r] = NormalDistributedRandom.NextDouble(random, avg, stdDev); } break; default: throw new ArgumentException(string.Format("ReplacementMethod {0} cannot be handled.", replacementMethod)); } return replacementValues; } private static IList GetReplacementValuesForString(IClassificationModel model, ModifiableDataset modifiableDataset, string variableName, IEnumerable rows, List originalValues, IEnumerable targetValues, FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Shuffle) { List replacementValues = null; IRandom random = new FastRandom(31415); switch (factorReplacementMethod) { case FactorReplacementMethodEnum.Best: // try replacing with all possible values and find the best replacement value var bestQuality = double.NegativeInfinity; foreach (var repl in modifiableDataset.GetStringValues(variableName, rows).Distinct()) { List curReplacementValues = Enumerable.Repeat(repl, modifiableDataset.Rows).ToList(); //fholzing: this result could be used later on (theoretically), but is neglected for better readability/method consistency var newValue = CalculateQualityForReplacement(model, modifiableDataset, variableName, originalValues, rows, curReplacementValues, targetValues); var curQuality = newValue; if (curQuality > bestQuality) { bestQuality = curQuality; replacementValues = curReplacementValues; } } break; case FactorReplacementMethodEnum.Mode: var mostCommonValue = rows.Select(r => originalValues[r]) .GroupBy(v => v) .OrderByDescending(g => g.Count()) .First().Key; replacementValues = Enumerable.Repeat(mostCommonValue, modifiableDataset.Rows).ToList(); break; case FactorReplacementMethodEnum.Shuffle: // new var has same empirical distribution but the relation to y is broken // prepare a complete column for the dataset replacementValues = Enumerable.Repeat(string.Empty, modifiableDataset.Rows).ToList(); // shuffle only the selected rows var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(random).ToList(); int i = 0; // update column values foreach (var r in rows) { replacementValues[r] = shuffledValues[i++]; } break; default: throw new ArgumentException(string.Format("FactorReplacementMethod {0} cannot be handled.", factorReplacementMethod)); } return replacementValues; } private static double CalculateQualityForReplacement( IClassificationModel model, ModifiableDataset modifiableDataset, string variableName, IList originalValues, IEnumerable rows, IList replacementValues, IEnumerable targetValues) { modifiableDataset.ReplaceVariable(variableName, replacementValues); var discModel = model as IDiscriminantFunctionClassificationModel; if (discModel != null) { var problemData = new ClassificationProblemData(modifiableDataset, modifiableDataset.VariableNames, model.TargetVariable); discModel.RecalculateModelParameters(problemData, rows); } //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements var estimates = model.GetEstimatedClassValues(modifiableDataset, rows).ToList(); var ret = CalculateQuality(targetValues, estimates); modifiableDataset.ReplaceVariable(variableName, originalValues); return ret; } public static double CalculateQuality(IEnumerable targetValues, IEnumerable estimatedClassValues) { OnlineCalculatorError errorState; var ret = OnlineAccuracyCalculator.Calculate(targetValues, estimatedClassValues, out errorState); if (errorState != OnlineCalculatorError.None) { throw new InvalidOperationException("Error during calculation with replaced inputs."); } return ret; } public static IEnumerable GetPartitionRows(DataPartitionEnum dataPartition, IClassificationProblemData problemData) { IEnumerable rows; switch (dataPartition) { case DataPartitionEnum.All: rows = problemData.AllIndices; break; case DataPartitionEnum.Test: rows = problemData.TestIndices; break; case DataPartitionEnum.Training: rows = problemData.TrainingIndices; break; default: throw new NotSupportedException("DataPartition not supported"); } return rows; } } }