#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Windows.Forms; using HeuristicLab.Common; using HeuristicLab.Data; using HeuristicLab.MainForm; using HeuristicLab.MainForm.WindowsForms; namespace HeuristicLab.Problems.DataAnalysis.Views { [View("Estimated Class Values")] [Content(typeof(ClassificationEnsembleSolution))] public partial class ClassificationEnsembleSolutionEstimatedClassValuesView : ClassificationSolutionEstimatedClassValuesView { private const string RowColumnName = "Row"; private const string TargetClassValuesColumnName = "Target Variable"; private const string EstimatedClassValuesColumnName = "Estimated Class Values"; private const string CorrectClassificationColumnName = "Correct Classification"; private const string ConfidenceColumnName = "Confidence"; private const string SamplesComboBoxAllSamples = "All Samples"; private const string SamplesComboBoxTrainingSamples = "Training Samples"; private const string SamplesComboBoxTestSamples = "Test Samples"; public new ClassificationEnsembleSolution Content { get { return (ClassificationEnsembleSolution)base.Content; } set { base.Content = value; } } public ClassificationEnsembleSolutionEstimatedClassValuesView() : base() { InitializeComponent(); SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples }); SamplesComboBox.SelectedIndex = 0; matrixView.DataGridView.RowPrePaint += new DataGridViewRowPrePaintEventHandler(DataGridView_RowPrePaint); } private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) { UpdateEstimatedValues(); } protected override void UpdateEstimatedValues() { if (InvokeRequired) { Invoke((Action)UpdateEstimatedValues); return; } if (Content == null) { matrixView.Content = null; return; } int[] indices; double[] estimatedClassValues; switch (SamplesComboBox.SelectedItem.ToString()) { case SamplesComboBoxAllSamples: { indices = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray(); estimatedClassValues = Content.EstimatedClassValues.ToArray(); break; } case SamplesComboBoxTrainingSamples: { indices = Content.ProblemData.TrainingIndices.ToArray(); estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray(); break; } case SamplesComboBoxTestSamples: { indices = Content.ProblemData.TestIndices.ToArray(); estimatedClassValues = Content.EstimatedTestClassValues.ToArray(); break; } default: throw new ArgumentException(); } int classValuesCount = Content.ProblemData.Classes; int solutionsCount = Content.ClassificationSolutions.Count(); string[,] values = new string[indices.Length, 5 + classValuesCount + solutionsCount]; double[] target = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray(); List> estimatedValuesVector = GetEstimatedValues(SamplesComboBox.SelectedItem.ToString(), indices, Content.ClassificationSolutions); for (int i = 0; i < indices.Length; i++) { int row = indices[i]; values[i, 0] = row.ToString(); values[i, 1] = target[row].ToString(); //display only indices and target values if no models are present if (solutionsCount > 0) { values[i, 2] = estimatedClassValues[i].ToString(); values[i, 3] = (target[row].IsAlmost(estimatedClassValues[i])).ToString(); var groups = estimatedValuesVector[i].GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList(); var estimationCount = groups.Where(g => g.Key != null).Select(g => g.Count).Sum(); // take care of divide by zero if (estimationCount != 0) { values[i, 4] = (((double)groups.Where(g => g.Key == estimatedClassValues[i]).Single().Count) / estimationCount).ToString(); } else { values[i, 4] = double.NaN.ToString(); } for (int classIndex = 0; classIndex < Content.ProblemData.Classes; classIndex++) { var group = groups.Where(g => g.Key == Content.ProblemData.ClassValues.ElementAt(classIndex)).SingleOrDefault(); if (group == null) values[i, 5 + classIndex] = 0.ToString(); else values[i, 5 + classIndex] = group.Count.ToString(); } for (int modelIndex = 0; modelIndex < estimatedValuesVector[i].Count; modelIndex++) { values[i, 5 + classValuesCount + modelIndex] = estimatedValuesVector[i][modelIndex] == null ? string.Empty : estimatedValuesVector[i][modelIndex].ToString(); } } } StringMatrix matrix = new StringMatrix(values); List columnNames = new List() { "Id", TargetClassValuesColumnName, EstimatedClassValuesColumnName, CorrectClassificationColumnName, ConfidenceColumnName }; columnNames.AddRange(Content.ProblemData.ClassNames); columnNames.AddRange(Content.Model.Models.Select(m => m.Name)); matrix.ColumnNames = columnNames; matrix.SortableView = true; matrixView.Content = matrix; } private List> GetEstimatedValues(string samplesSelection, int[] rows, IEnumerable solutions) { List> values = new List>(); int solutionIndex = 0; foreach (var solution in solutions) { double[] estimation = solution.GetEstimatedClassValues(rows).ToArray(); for (int i = 0; i < rows.Length; i++) { var row = rows[i]; if (solutionIndex == 0) values.Add(new List()); if (samplesSelection == SamplesComboBoxAllSamples) values[i].Add(estimation[i]); else if (samplesSelection == SamplesComboBoxTrainingSamples && solution.ProblemData.IsTrainingSample(row)) values[i].Add(estimation[i]); else if (samplesSelection == SamplesComboBoxTestSamples && solution.ProblemData.IsTestSample(row)) values[i].Add(estimation[i]); else values[i].Add(null); } solutionIndex++; } return values; } private void DataGridView_RowPrePaint(object sender, DataGridViewRowPrePaintEventArgs e) { if (InvokeRequired) { Invoke(new EventHandler(DataGridView_RowPrePaint), sender, e); return; } var cellValue = matrixView.DataGridView[3, e.RowIndex].Value.ToString(); if (string.IsNullOrEmpty(cellValue)) return; bool correctClassified = bool.Parse(cellValue); matrixView.DataGridView.Rows[e.RowIndex].DefaultCellStyle.ForeColor = correctClassified ? Color.MediumSeaGreen : Color.Red; } } }