#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
using HeuristicLab.Common;
using HeuristicLab.Data;
using HeuristicLab.MainForm;
using HeuristicLab.MainForm.WindowsForms;
namespace HeuristicLab.Problems.DataAnalysis.Views {
[View("Estimated Class Values")]
[Content(typeof(ClassificationEnsembleSolution))]
public partial class ClassificationEnsembleSolutionEstimatedClassValuesView :
ClassificationSolutionEstimatedClassValuesView {
private const string RowColumnName = "Row";
private const string TargetClassValuesColumnName = "Target Variable";
private const string EstimatedClassValuesColumnName = "Estimated Class Values";
private const string CorrectClassificationColumnName = "Correct Classification";
private const string ConfidenceColumnName = "Confidence";
private const string SamplesComboBoxAllSamples = "All Samples";
private const string SamplesComboBoxTrainingSamples = "Training Samples";
private const string SamplesComboBoxTestSamples = "Test Samples";
public new ClassificationEnsembleSolution Content {
get { return (ClassificationEnsembleSolution)base.Content; }
set { base.Content = value; }
}
public ClassificationEnsembleSolutionEstimatedClassValuesView()
: base() {
InitializeComponent();
SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
SamplesComboBox.SelectedIndex = 0;
matrixView.DataGridView.RowPrePaint += new DataGridViewRowPrePaintEventHandler(DataGridView_RowPrePaint);
}
private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
UpdateEstimatedValues();
}
protected override void UpdateEstimatedValues() {
if (InvokeRequired) {
Invoke((Action)UpdateEstimatedValues);
return;
}
if (Content == null) {
matrixView.Content = null;
return;
}
int[] indices;
double[] estimatedClassValues;
switch (SamplesComboBox.SelectedItem.ToString()) {
case SamplesComboBoxAllSamples: {
indices = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray();
estimatedClassValues = Content.EstimatedClassValues.ToArray();
break;
}
case SamplesComboBoxTrainingSamples: {
indices = Content.ProblemData.TrainingIndices.ToArray();
estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
break;
}
case SamplesComboBoxTestSamples: {
indices = Content.ProblemData.TestIndices.ToArray();
estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
break;
}
default:
throw new ArgumentException();
}
int classValuesCount = Content.ProblemData.Classes;
int solutionsCount = Content.ClassificationSolutions.Count();
string[,] values = new string[indices.Length, 5 + classValuesCount + solutionsCount];
double[] target = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
List> estimatedValuesVector = GetEstimatedValues(SamplesComboBox.SelectedItem.ToString(), indices,
Content.ClassificationSolutions);
for (int i = 0; i < indices.Length; i++) {
int row = indices[i];
values[i, 0] = row.ToString();
values[i, 1] = target[row].ToString();
//display only indices and target values if no models are present
if (solutionsCount > 0) {
values[i, 2] = estimatedClassValues[i].ToString();
values[i, 3] = (target[row].IsAlmost(estimatedClassValues[i])).ToString();
var groups =
estimatedValuesVector[i].GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList();
var estimationCount = groups.Where(g => g.Key != null).Select(g => g.Count).Sum();
// take care of divide by zero
if (estimationCount != 0) {
values[i, 4] = (((double)groups.Where(g => g.Key == estimatedClassValues[i]).Single().Count) / estimationCount).ToString();
} else {
values[i, 4] = double.NaN.ToString();
}
for (int classIndex = 0; classIndex < Content.ProblemData.Classes; classIndex++) {
var group = groups.Where(g => g.Key == Content.ProblemData.ClassValues.ElementAt(classIndex)).SingleOrDefault();
if (group == null) values[i, 5 + classIndex] = 0.ToString();
else values[i, 5 + classIndex] = group.Count.ToString();
}
for (int modelIndex = 0; modelIndex < estimatedValuesVector[i].Count; modelIndex++) {
values[i, 5 + classValuesCount + modelIndex] = estimatedValuesVector[i][modelIndex] == null
? string.Empty
: estimatedValuesVector[i][modelIndex].ToString();
}
}
}
StringMatrix matrix = new StringMatrix(values);
List columnNames = new List() { "Id", TargetClassValuesColumnName, EstimatedClassValuesColumnName, CorrectClassificationColumnName, ConfidenceColumnName };
columnNames.AddRange(Content.ProblemData.ClassNames);
columnNames.AddRange(Content.Model.Models.Select(m => m.Name));
matrix.ColumnNames = columnNames;
matrix.SortableView = true;
matrixView.Content = matrix;
}
private List> GetEstimatedValues(string samplesSelection, int[] rows, IEnumerable solutions) {
List> values = new List>();
int solutionIndex = 0;
foreach (var solution in solutions) {
double[] estimation = solution.GetEstimatedClassValues(rows).ToArray();
for (int i = 0; i < rows.Length; i++) {
var row = rows[i];
if (solutionIndex == 0) values.Add(new List());
if (samplesSelection == SamplesComboBoxAllSamples)
values[i].Add(estimation[i]);
else if (samplesSelection == SamplesComboBoxTrainingSamples && solution.ProblemData.IsTrainingSample(row))
values[i].Add(estimation[i]);
else if (samplesSelection == SamplesComboBoxTestSamples && solution.ProblemData.IsTestSample(row))
values[i].Add(estimation[i]);
else
values[i].Add(null);
}
solutionIndex++;
}
return values;
}
private void DataGridView_RowPrePaint(object sender, DataGridViewRowPrePaintEventArgs e) {
if (InvokeRequired) {
Invoke(new EventHandler(DataGridView_RowPrePaint), sender, e);
return;
}
var cellValue = matrixView.DataGridView[3, e.RowIndex].Value.ToString();
if (string.IsNullOrEmpty(cellValue)) return;
bool correctClassified = bool.Parse(cellValue);
matrixView.DataGridView.Rows[e.RowIndex].DefaultCellStyle.ForeColor = correctClassified ? Color.MediumSeaGreen : Color.Red;
}
}
}