#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.IO;
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Algorithms.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.Instances.DataAnalysis;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Tests {
[TestClass]
public class GaussianProcessRegressionSampleTest {
private const string SampleFileName = "GPR";
private static readonly ProtoBufSerializer serializer = new ProtoBufSerializer();
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateGaussianProcessRegressionSampleTest() {
var gpr = CreateGaussianProcessRegressionSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension);
serializer.Serialize(gpr, path);
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "long")]
public void RunGaussianProcessRegressionSample() {
var gpr = CreateGaussianProcessRegressionSample();
gpr.SetSeedRandomly = false;
gpr.Seed = 1618551877;
SamplesUtils.RunAlgorithm(gpr);
Assert.AreEqual(-940.70700288855619, SamplesUtils.GetDoubleResult(gpr, "NegativeLogLikelihood"));
Assert.AreEqual(0.99563390794061979, SamplesUtils.GetDoubleResult(gpr, "Training R²"));
}
private GaussianProcessRegression CreateGaussianProcessRegressionSample() {
var gpr = new GaussianProcessRegression();
var provider = new VariousInstanceProvider();
var instance = provider.GetDataDescriptors().Where(x => x.Name.Contains("Spatial co-evolution")).Single();
var regProblem = new RegressionProblem();
regProblem.Load(provider.LoadData(instance));
#region Algorithm Configuration
gpr.Name = "Gaussian Process Regression";
gpr.Description = "A Gaussian process regression algorithm which solves the spatial co-evolution benchmark problem";
gpr.Problem = regProblem;
gpr.CovarianceFunction = gpr.CovarianceFunctionParameter.ValidValues.OfType().First();
gpr.MeanFunction = gpr.MeanFunctionParameter.ValidValues.OfType().First();
gpr.MinimizationIterations = 20;
gpr.Seed = 0;
gpr.SetSeedRandomly = true;
#endregion
gpr.Engine = new ParallelEngine.ParallelEngine();
return gpr;
}
}
}