using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman80 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman80() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman80(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman80(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("II.35.18 n_0/(exp(mom*B/(kb*T))+exp(-mom*B/(kb*T))) | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "n" : "n_noise"; } } protected override string[] VariableNames { get { return new[] {"n_0", "kb", "T", "mom", "B", noiseRatio == null ? "n" : "n_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"n_0", "kb", "T", "mom", "B"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var n_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var kb = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var T = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var mom = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var B = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var n = new List(); data.Add(n_0); data.Add(kb); data.Add(T); data.Add(mom); data.Add(B); data.Add(n); for (var i = 0; i < n_0.Count; i++) { var res = n_0[i] / (Math.Exp(mom[i] * B[i] / (kb[i] * T[i])) + Math.Exp(-mom[i] * B[i] / (kb[i] * T[i]))); n.Add(res); } if (noiseRatio != null) { var n_noise = new List(); var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); n_noise.AddRange(n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(n); data.Add(n_noise); } return data; } } }