#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HEAL.Attic;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
[StorableType("54D82779-7A37-43E4-AFD6-0C3E8D24F6EE")]
[Item("SymbolicClassificationSolutionImpactValuesCalculator", "Calculate symbolic expression tree node impact values for classification problems.")]
public class SymbolicClassificationSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
public SymbolicClassificationSolutionImpactValuesCalculator() { }
protected SymbolicClassificationSolutionImpactValuesCalculator(SymbolicClassificationSolutionImpactValuesCalculator original, Cloner cloner)
: base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicClassificationSolutionImpactValuesCalculator(this, cloner);
}
[StorableConstructor]
protected SymbolicClassificationSolutionImpactValuesCalculator(StorableConstructorFlag _) : base(_) { }
protected override double CalculateQualityForImpacts(ISymbolicDataAnalysisModel model, IDataAnalysisProblemData problemData, IEnumerable rows) {
var classificationModel = (ISymbolicClassificationModel)model;
var classificationProblemData = (IClassificationProblemData)problemData;
OnlineCalculatorError errorState;
var dataset = problemData.Dataset;
classificationModel.RecalculateModelParameters(classificationProblemData, rows);
var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows);
var originalClassValues = classificationModel.GetEstimatedClassValues(dataset, rows);
var qualityForImpactsCalculation = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) qualityForImpactsCalculation = 0.0;
return qualityForImpactsCalculation;
}
}
}