#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
namespace HeuristicLab.Problems.DataAnalysis {
///
/// Represents discriminant function classification data analysis models.
///
[StorableType("E7A8648D-C938-499F-A712-185542095708")]
[Item("DiscriminantFunctionClassificationModel", "Represents a classification model that uses a discriminant function and classification thresholds.")]
public class DiscriminantFunctionClassificationModel : ClassificationModel, IDiscriminantFunctionClassificationModel {
public override IEnumerable VariablesUsedForPrediction {
get { return model.VariablesUsedForPrediction; }
}
[Storable]
private IRegressionModel model;
public IRegressionModel Model {
get { return model; }
private set { model = value; }
}
[Storable]
private double[] classValues;
public IEnumerable ClassValues {
get { return (double[])classValues.Clone(); }
private set { classValues = value.ToArray(); }
}
[Storable]
private double[] thresholds;
public IEnumerable Thresholds {
get { return (IEnumerable)thresholds.Clone(); }
private set { thresholds = value.ToArray(); }
}
private IDiscriminantFunctionThresholdCalculator thresholdCalculator;
[Storable]
public IDiscriminantFunctionThresholdCalculator ThresholdCalculator {
get { return thresholdCalculator; }
private set { thresholdCalculator = value; }
}
[StorableConstructor]
protected DiscriminantFunctionClassificationModel(StorableConstructorFlag _) : base(_) { }
protected DiscriminantFunctionClassificationModel(DiscriminantFunctionClassificationModel original, Cloner cloner)
: base(original, cloner) {
model = cloner.Clone(original.model);
classValues = (double[])original.classValues.Clone();
thresholds = (double[])original.thresholds.Clone();
}
public DiscriminantFunctionClassificationModel(IRegressionModel model, IDiscriminantFunctionThresholdCalculator thresholdCalculator)
: base(model.TargetVariable) {
this.name = ItemName;
this.description = ItemDescription;
this.model = model;
this.classValues = new double[0];
this.thresholds = new double[0];
this.thresholdCalculator = thresholdCalculator;
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (ThresholdCalculator == null) ThresholdCalculator = new AccuracyMaximizationThresholdCalculator();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new DiscriminantFunctionClassificationModel(this, cloner);
}
public void SetThresholdsAndClassValues(IEnumerable thresholds, IEnumerable classValues) {
var classValuesArr = classValues.ToArray();
var thresholdsArr = thresholds.ToArray();
if (thresholdsArr.Length != classValuesArr.Length) throw new ArgumentException();
this.classValues = classValuesArr;
this.thresholds = thresholdsArr;
OnThresholdsChanged(EventArgs.Empty);
}
public virtual void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable rows) {
double[] classValues;
double[] thresholds;
var targetClassValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
var estimatedTrainingValues = GetEstimatedValues(problemData.Dataset, rows);
thresholdCalculator.Calculate(problemData, estimatedTrainingValues, targetClassValues, out classValues, out thresholds);
SetThresholdsAndClassValues(thresholds, classValues);
}
public IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) {
return model.GetEstimatedValues(dataset, rows);
}
public override IEnumerable GetEstimatedClassValues(IDataset dataset, IEnumerable rows) {
var estimatedValues = GetEstimatedValues(dataset, rows);
return GetEstimatedClassValues(estimatedValues);
}
public virtual IEnumerable GetEstimatedClassValues(IEnumerable estimatedValues) {
if (!Thresholds.Any() && !ClassValues.Any()) throw new ArgumentException("No thresholds and class values were set for the current classification model.");
foreach (var x in estimatedValues) {
int classIndex = 0;
// find first threshold value which is larger than x => class index = threshold index + 1
for (int i = 0; i < thresholds.Length; i++) {
if (x > thresholds[i]) classIndex++;
else break;
}
yield return classValues.ElementAt(classIndex - 1);
}
}
#region events
public event EventHandler ThresholdsChanged;
protected virtual void OnThresholdsChanged(EventArgs e) {
var listener = ThresholdsChanged;
if (listener != null) listener(this, e);
}
#endregion
public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
return CreateDiscriminantFunctionClassificationSolution(problemData);
}
public virtual IDiscriminantFunctionClassificationSolution CreateDiscriminantFunctionClassificationSolution(
IClassificationProblemData problemData) {
return new DiscriminantFunctionClassificationSolution(this, new ClassificationProblemData(problemData));
}
}
}