#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.GP.Interfaces;
using HeuristicLab.Operators;
using HeuristicLab.Random;
using HeuristicLab.Data;
using System.Xml;
using HeuristicLab.Core;
namespace HeuristicLab.GP.StructureIdentification {
public class Variable : Terminal {
public const string WEIGHT = "Weight";
public const string OFFSET = "SampleOffset";
public const string VARIABLENAME = "Variable";
private int minOffset;
public int MinTimeOffset {
get {
return minOffset;
}
set {
if (value != minOffset) {
minOffset = value;
SetupInitialization();
SetupManipulation();
}
}
}
private int maxOffset;
public int MaxTimeOffset {
get {
return maxOffset;
}
set {
if (value != maxOffset) {
maxOffset = value;
SetupManipulation();
SetupInitialization();
}
}
}
public override string Description {
get {
return @"Variable reads a value from a dataset, multiplies that value with a given factor and returns the result.
The variable 'SampleOffset' can be used to read a value from previous or following rows.
The index of the row that is actually read is SampleIndex+SampleOffset).";
}
}
public override IFunctionTree GetTreeNode() {
return new VariableFunctionTree(this);
}
public Variable()
: base() {
SetupInitialization();
SetupManipulation();
}
private void SetupInitialization() {
CombinedOperator combinedOp = new CombinedOperator();
SequentialProcessor seq = new SequentialProcessor();
UniformItemChooser variableRandomizer = new UniformItemChooser();
variableRandomizer.GetVariableInfo("Value").ActualName = VARIABLENAME;
variableRandomizer.GetVariableInfo("Values").ActualName = "InputVariables";
variableRandomizer.Name = "Variable randomizer";
NormalRandomizer weightRandomizer = new NormalRandomizer();
weightRandomizer.Mu = 0.0;
weightRandomizer.Sigma = 1.0;
weightRandomizer.GetVariableInfo("Value").ActualName = WEIGHT;
weightRandomizer.Name = "Weight Randomizer";
UniformRandomizer offsetRandomizer = new UniformRandomizer();
offsetRandomizer.Min = minOffset;
offsetRandomizer.Max = maxOffset + 1;
offsetRandomizer.GetVariableInfo("Value").ActualName = OFFSET;
offsetRandomizer.Name = "Offset Randomizer";
combinedOp.OperatorGraph.AddOperator(seq);
combinedOp.OperatorGraph.AddOperator(variableRandomizer);
combinedOp.OperatorGraph.AddOperator(weightRandomizer);
combinedOp.OperatorGraph.AddOperator(offsetRandomizer);
combinedOp.OperatorGraph.InitialOperator = seq;
seq.AddSubOperator(variableRandomizer);
seq.AddSubOperator(weightRandomizer);
seq.AddSubOperator(offsetRandomizer);
Initializer = combinedOp;
}
private void SetupManipulation() {
// manipulation operator
CombinedOperator combinedOp = new CombinedOperator();
SequentialProcessor seq = new SequentialProcessor();
UniformItemChooser variableRandomizer = new UniformItemChooser();
variableRandomizer.GetVariableInfo("Value").ActualName = VARIABLENAME;
variableRandomizer.GetVariableInfo("Values").ActualName = "InputVariables";
variableRandomizer.Name = "Variable randomizer";
NormalRandomAdder weightRandomAdder = new NormalRandomAdder();
weightRandomAdder.Mu = 0.0;
weightRandomAdder.Sigma = 1.0;
weightRandomAdder.GetVariableInfo("Value").ActualName = WEIGHT;
weightRandomAdder.Name = "Weight Adder";
NormalRandomAdder offsetRandomAdder = new NormalRandomAdder();
offsetRandomAdder.Mu = 0.0;
offsetRandomAdder.Sigma = 1.0;
offsetRandomAdder.GetVariableInfo("Value").ActualName = OFFSET;
offsetRandomAdder.Name = "Offset Adder";
offsetRandomAdder.GetVariableInfo("MinValue").Local = true;
offsetRandomAdder.AddVariable(new HeuristicLab.Core.Variable("MinValue", new DoubleData(minOffset)));
offsetRandomAdder.GetVariableInfo("MaxValue").Local = true;
offsetRandomAdder.AddVariable(new HeuristicLab.Core.Variable("MaxValue", new DoubleData(maxOffset + 1)));
combinedOp.OperatorGraph.AddOperator(seq);
combinedOp.OperatorGraph.AddOperator(variableRandomizer);
combinedOp.OperatorGraph.AddOperator(weightRandomAdder);
combinedOp.OperatorGraph.AddOperator(offsetRandomAdder);
combinedOp.OperatorGraph.InitialOperator = seq;
seq.AddSubOperator(variableRandomizer);
seq.AddSubOperator(weightRandomAdder);
seq.AddSubOperator(offsetRandomAdder);
Manipulator = combinedOp;
}
public override HeuristicLab.Core.IView CreateView() {
return new VariableView(this);
}
#region persistence
public override object Clone(System.Collections.Generic.IDictionary clonedObjects) {
Variable clone = (Variable)base.Clone(clonedObjects);
clone.maxOffset = MaxTimeOffset;
clone.minOffset = MinTimeOffset;
return clone;
}
public override System.Xml.XmlNode GetXmlNode(string name, System.Xml.XmlDocument document, System.Collections.Generic.IDictionary persistedObjects) {
XmlNode node = base.GetXmlNode(name, document, persistedObjects);
var minTimeOffsetAttr = document.CreateAttribute("MinTimeOffset");
minTimeOffsetAttr.Value = MinTimeOffset.ToString();
var maxTimeOffsetAttr = document.CreateAttribute("MaxTimeOffset");
maxTimeOffsetAttr.Value = MaxTimeOffset.ToString();
node.Attributes.Append(minTimeOffsetAttr);
node.Attributes.Append(maxTimeOffsetAttr);
return node;
}
public override void Populate(System.Xml.XmlNode node, System.Collections.Generic.IDictionary restoredObjects) {
base.Populate(node, restoredObjects);
if (node.Attributes["MinTimeOffset"] != null)
minOffset = XmlConvert.ToInt32(node.Attributes["MinTimeOffset"].Value);
else MinTimeOffset = 0;
if (node.Attributes["MaxTimeOffset"] != null)
maxOffset = XmlConvert.ToInt32(node.Attributes["MaxTimeOffset"].Value);
else MaxTimeOffset = 0;
}
#endregion
}
}