#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
using HeuristicLab.GP.Interfaces;
namespace HeuristicLab.GP.StructureIdentification.ConditionalEvaluation {
public class ConditionalSimpleEvaluator : GPEvaluatorBase {
public ConditionalSimpleEvaluator()
: base() {
AddVariableInfo(new VariableInfo("MaxTimeOffset", "Maximal time offset for all feature", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MinTimeOffset", "Minimal time offset for all feature", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("ConditionVariable", "Variable index which indicates if the row should be evaluated (0 means do not evaluate, != 0 evaluate)", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("Values", "The values of the target variable as predicted by the model and the original value of the target variable", typeof(ItemList), VariableKind.New | VariableKind.Out));
}
public override void Evaluate(IScope scope, IFunctionTree tree, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end) {
ItemList values = GetVariableValue("Values", scope, false, false);
if (values == null) {
values = new ItemList();
IVariableInfo info = GetVariableInfo("Values");
if (info.Local)
AddVariable(new HeuristicLab.Core.Variable(info.ActualName, values));
else
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), values));
}
values.Clear();
int maxTimeOffset = GetVariableValue("MaxTimeOffset", scope, true).Data;
int minTimeOffset = GetVariableValue("MinTimeOffset", scope, true).Data;
int conditionVariable = GetVariableValue("ConditionVariable", scope, true).Data;
var rows = from row in Enumerable.Range(start, end - start)
// check if condition variable is true between sample - minTimeOffset and sample - maxTimeOffset
// => select rows where the value of the condition variable is different from zero in the whole range
where (from neighbour in Enumerable.Range(row + minTimeOffset, maxTimeOffset - minTimeOffset)
let value = dataset.GetValue(neighbour, conditionVariable)
where value == 0
select neighbour).Any() == false
select row;
double[] estimatedValues = evaluator.Evaluate(dataset, tree, rows).ToArray();
double[] originalValues = (from row in rows select dataset.GetValue(row, targetVariable)).ToArray();
for (int i = 0; i < rows.Count(); i++) {
ItemList row = new ItemList();
row.Add(new DoubleData(estimatedValues[i]));
row.Add(new DoubleData(originalValues[i]));
values.Add(row);
}
scope.GetVariableValue("TotalEvaluatedNodes", true).Data -= (end - start) - rows.Count();
}
}
}