#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Core; using System.Diagnostics; using HeuristicLab.Evolutionary; using HeuristicLab.GP.Interfaces; namespace HeuristicLab.GP.Operators { public abstract class GPCrossoverBase : CrossoverBase { public GPCrossoverBase() : base() { AddVariableInfo(new VariableInfo("FunctionLibrary", "The operator library containing all available operators", typeof(FunctionLibrary), VariableKind.In)); AddVariableInfo(new VariableInfo("FunctionTree", "The tree to crossover", typeof(IGeneticProgrammingModel), VariableKind.In | VariableKind.New)); } internal abstract IFunctionTree Cross(IScope scope, TreeGardener gardener, IRandom random, IFunctionTree tree0, IFunctionTree tree1); protected override void Cross(IScope scope, IRandom random) { FunctionLibrary opLibrary = GetVariableValue("FunctionLibrary", scope, true); TreeGardener gardener = new TreeGardener(random, opLibrary); if (scope.SubScopes.Count != 2) throw new InvalidOperationException("Number of parents must be exactly two."); IGeneticProgrammingModel parent0 = GetVariableValue("FunctionTree", scope.SubScopes[0], false); IGeneticProgrammingModel parent1 = GetVariableValue("FunctionTree", scope.SubScopes[1], false); // randomly swap parents to remove a possible bias from selection (e.g. when using gender-specific selection) if (random.NextDouble() < 0.5) { IGeneticProgrammingModel tmp = parent0; parent0 = parent1; parent1 = tmp; } IFunctionTree child = Cross(scope, gardener, random, parent0.FunctionTree, parent1.FunctionTree); Debug.Assert(gardener.IsValidTree(child)); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), new GeneticProgrammingModel(child))); } } }