/************************************************************************* Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project). >>> SOURCE LICENSE >>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation (www.fsf.org); either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses >>> END OF LICENSE >>> *************************************************************************/ using System; namespace alglib { public class lq { /************************************************************************* LQ decomposition of a rectangular matrix of size MxN Input parameters: A - matrix A whose indexes range within [0..M-1, 0..N-1]. M - number of rows in matrix A. N - number of columns in matrix A. Output parameters: A - matrices L and Q in compact form (see below) Tau - array of scalar factors which are used to form matrix Q. Array whose index ranges within [0..Min(M,N)-1]. Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size MxM, L - lower triangular (or lower trapezoid) matrix of size M x N. The elements of matrix L are located on and below the main diagonal of matrix A. The elements which are located in Tau array and above the main diagonal of matrix A are used to form matrix Q as follows: Matrix Q is represented as a product of elementary reflections Q = H(k-1)*H(k-2)*...*H(1)*H(0), where k = min(m,n), and each H(i) is of the form H(i) = 1 - tau * v * (v^T) where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1)=0, v(i) = 1, v(i+1:n-1) stored in A(i,i+1:n-1). -- ALGLIB -- Copyright 2005-2007 by Bochkanov Sergey *************************************************************************/ public static void rmatrixlq(ref double[,] a, int m, int n, ref double[] tau) { double[] work = new double[0]; double[] t = new double[0]; int i = 0; int k = 0; int minmn = 0; int maxmn = 0; double tmp = 0; int i_ = 0; int i1_ = 0; minmn = Math.Min(m, n); maxmn = Math.Max(m, n); work = new double[m+1]; t = new double[n+1]; tau = new double[minmn-1+1]; k = Math.Min(m, n); for(i=0; i<=k-1; i++) { // // Generate elementary reflector H(i) to annihilate A(i,i+1:n-1) // i1_ = (i) - (1); for(i_=1; i_<=n-i;i_++) { t[i_] = a[i,i_+i1_]; } reflections.generatereflection(ref t, n-i, ref tmp); tau[i] = tmp; i1_ = (1) - (i); for(i_=i; i_<=n-1;i_++) { a[i,i_] = t[i_+i1_]; } t[1] = 1; if( i=0. N - number of columns in given matrix A. N>=0. Tau - scalar factors which are used to form Q. Output of the RMatrixLQ subroutine. QRows - required number of rows in matrix Q. N>=QRows>=0. Output parameters: Q - first QRows rows of matrix Q. Array whose indexes range within [0..QRows-1, 0..N-1]. If QRows=0, the array remains unchanged. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************/ public static void rmatrixlqunpackq(ref double[,] a, int m, int n, ref double[] tau, int qrows, ref double[,] q) { int i = 0; int j = 0; int k = 0; int minmn = 0; double[] v = new double[0]; double[] work = new double[0]; int i_ = 0; int i1_ = 0; System.Diagnostics.Debug.Assert(qrows<=n, "RMatrixLQUnpackQ: QRows>N!"); if( m<=0 | n<=0 | qrows<=0 ) { return; } // // init // minmn = Math.Min(m, n); k = Math.Min(minmn, qrows); q = new double[qrows-1+1, n-1+1]; v = new double[n+1]; work = new double[qrows+1]; for(i=0; i<=qrows-1; i++) { for(j=0; j<=n-1; j++) { if( i==j ) { q[i,j] = 1; } else { q[i,j] = 0; } } } // // unpack Q // for(i=k-1; i>=0; i--) { // // Apply H(i) // i1_ = (i) - (1); for(i_=1; i_<=n-i;i_++) { v[i_] = a[i,i_+i1_]; } v[1] = 1; reflections.applyreflectionfromtheright(ref q, tau[i], ref v, 0, qrows-1, i, n-1, ref work); } } /************************************************************************* Unpacking of matrix L from the LQ decomposition of a matrix A Input parameters: A - matrices Q and L in compact form. Output of RMatrixLQ subroutine. M - number of rows in given matrix A. M>=0. N - number of columns in given matrix A. N>=0. Output parameters: L - matrix L, array[0..M-1, 0..N-1]. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************/ public static void rmatrixlqunpackl(ref double[,] a, int m, int n, ref double[,] l) { int i = 0; int k = 0; int i_ = 0; if( m<=0 | n<=0 ) { return; } l = new double[m-1+1, n-1+1]; for(i=0; i<=n-1; i++) { l[0,i] = 0; } for(i=1; i<=m-1; i++) { for(i_=0; i_<=n-1;i_++) { l[i,i_] = l[0,i_]; } } for(i=0; i<=m-1; i++) { k = Math.Min(i, n-1); for(i_=0; i_<=k;i_++) { l[i,i_] = a[i,i_]; } } } public static void lqdecomposition(ref double[,] a, int m, int n, ref double[] tau) { double[] work = new double[0]; double[] t = new double[0]; int i = 0; int k = 0; int nmip1 = 0; int minmn = 0; int maxmn = 0; double tmp = 0; int i_ = 0; int i1_ = 0; minmn = Math.Min(m, n); maxmn = Math.Max(m, n); work = new double[m+1]; t = new double[n+1]; tau = new double[minmn+1]; // // Test the input arguments // k = Math.Min(m, n); for(i=1; i<=k; i++) { // // Generate elementary reflector H(i) to annihilate A(i,i+1:n) // nmip1 = n-i+1; i1_ = (i) - (1); for(i_=1; i_<=nmip1;i_++) { t[i_] = a[i,i_+i1_]; } reflections.generatereflection(ref t, nmip1, ref tmp); tau[i] = tmp; i1_ = (1) - (i); for(i_=i; i_<=n;i_++) { a[i,i_] = t[i_+i1_]; } t[1] = 1; if( iN!"); if( m==0 | n==0 | qrows==0 ) { return; } // // init // minmn = Math.Min(m, n); k = Math.Min(minmn, qrows); q = new double[qrows+1, n+1]; v = new double[n+1]; work = new double[qrows+1]; for(i=1; i<=qrows; i++) { for(j=1; j<=n; j++) { if( i==j ) { q[i,j] = 1; } else { q[i,j] = 0; } } } // // unpack Q // for(i=k; i>=1; i--) { // // Apply H(i) // vm = n-i+1; i1_ = (i) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = a[i,i_+i1_]; } v[1] = 1; reflections.applyreflectionfromtheright(ref q, tau[i], ref v, 1, qrows, i, n, ref work); } } public static void lqdecompositionunpacked(double[,] a, int m, int n, ref double[,] l, ref double[,] q) { int i = 0; int j = 0; double[] tau = new double[0]; a = (double[,])a.Clone(); if( n<=0 ) { return; } q = new double[n+1, n+1]; l = new double[m+1, n+1]; // // LQDecomposition // lqdecomposition(ref a, m, n, ref tau); // // L // for(i=1; i<=m; i++) { for(j=1; j<=n; j++) { if( j>i ) { l[i,j] = 0; } else { l[i,j] = a[i,j]; } } } // // Q // unpackqfromlq(ref a, m, n, ref tau, n, ref q); } } }