/************************************************************************* Copyright (c) 1992-2007 The University of Tennessee. All rights reserved. Contributors: * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to pseudocode. See subroutines comments for additional copyrights. >>> SOURCE LICENSE >>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation (www.fsf.org); either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses >>> END OF LICENSE >>> *************************************************************************/ using System; namespace alglib { public class bidiagonal { /************************************************************************* Reduction of a rectangular matrix to bidiagonal form The algorithm reduces the rectangular matrix A to bidiagonal form by orthogonal transformations P and Q: A = Q*B*P. Input parameters: A - source matrix. array[0..M-1, 0..N-1] M - number of rows in matrix A. N - number of columns in matrix A. Output parameters: A - matrices Q, B, P in compact form (see below). TauQ - scalar factors which are used to form matrix Q. TauP - scalar factors which are used to form matrix P. The main diagonal and one of the secondary diagonals of matrix A are replaced with bidiagonal matrix B. Other elements contain elementary reflections which form MxM matrix Q and NxN matrix P, respectively. If M>=N, B is the upper bidiagonal MxN matrix and is stored in the corresponding elements of matrix A. Matrix Q is represented as a product of elementary reflections Q = H(0)*H(1)*...*H(n-1), where H(i) = 1-tau*v*v'. Here tau is a scalar which is stored in TauQ[i], and vector v has the following structure: v(0:i-1)=0, v(i)=1, v(i+1:m-1) is stored in elements A(i+1:m-1,i). Matrix P is as follows: P = G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i], u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1). If M n): m=5, n=6 (m < n): ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) ( v1 v2 v3 v4 v5 ) Here vi and ui are vectors which form H(i) and G(i), and d and e - are the diagonal and off-diagonal elements of matrix B. *************************************************************************/ public static void rmatrixbd(ref double[,] a, int m, int n, ref double[] tauq, ref double[] taup) { double[] work = new double[0]; double[] t = new double[0]; int minmn = 0; int maxmn = 0; int i = 0; double ltau = 0; int i_ = 0; int i1_ = 0; // // Prepare // if( n<=0 | m<=0 ) { return; } minmn = Math.Min(m, n); maxmn = Math.Max(m, n); work = new double[maxmn+1]; t = new double[maxmn+1]; if( m>=n ) { tauq = new double[n-1+1]; taup = new double[n-1+1]; } else { tauq = new double[m-1+1]; taup = new double[m-1+1]; } if( m>=n ) { // // Reduce to upper bidiagonal form // for(i=0; i<=n-1; i++) { // // Generate elementary reflector H(i) to annihilate A(i+1:m-1,i) // i1_ = (i) - (1); for(i_=1; i_<=m-i;i_++) { t[i_] = a[i_+i1_,i]; } reflections.generatereflection(ref t, m-i, ref ltau); tauq[i] = ltau; i1_ = (1) - (i); for(i_=i; i_<=m-1;i_++) { a[i_,i] = t[i_+i1_]; } t[1] = 1; // // Apply H(i) to A(i:m-1,i+1:n-1) from the left // reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i, m-1, i+1, n-1, ref work); if( i=QColumns>=0. Output parameters: Q - first QColumns columns of matrix Q. Array[0..M-1, 0..QColumns-1] If QColumns=0, the array is not modified. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************/ public static void rmatrixbdunpackq(ref double[,] qp, int m, int n, ref double[] tauq, int qcolumns, ref double[,] q) { int i = 0; int j = 0; System.Diagnostics.Debug.Assert(qcolumns<=m, "RMatrixBDUnpackQ: QColumns>M!"); System.Diagnostics.Debug.Assert(qcolumns>=0, "RMatrixBDUnpackQ: QColumns<0!"); if( m==0 | n==0 | qcolumns==0 ) { return; } // // prepare Q // q = new double[m-1+1, qcolumns-1+1]; for(i=0; i<=m-1; i++) { for(j=0; j<=qcolumns-1; j++) { if( i==j ) { q[i,j] = 1; } else { q[i,j] = 0; } } } // // Calculate // rmatrixbdmultiplybyq(ref qp, m, n, ref tauq, ref q, m, qcolumns, false, false); } /************************************************************************* Multiplication by matrix Q which reduces matrix A to bidiagonal form. The algorithm allows pre- or post-multiply by Q or Q'. Input parameters: QP - matrices Q and P in compact form. Output of ToBidiagonal subroutine. M - number of rows in matrix A. N - number of columns in matrix A. TAUQ - scalar factors which are used to form Q. Output of ToBidiagonal subroutine. Z - multiplied matrix. array[0..ZRows-1,0..ZColumns-1] ZRows - number of rows in matrix Z. If FromTheRight=False, ZRows=M, otherwise ZRows can be arbitrary. ZColumns - number of columns in matrix Z. If FromTheRight=True, ZColumns=M, otherwise ZColumns can be arbitrary. FromTheRight - pre- or post-multiply. DoTranspose - multiply by Q or Q'. Output parameters: Z - product of Z and Q. Array[0..ZRows-1,0..ZColumns-1] If ZRows=0 or ZColumns=0, the array is not modified. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************/ public static void rmatrixbdmultiplybyq(ref double[,] qp, int m, int n, ref double[] tauq, ref double[,] z, int zrows, int zcolumns, bool fromtheright, bool dotranspose) { int i = 0; int i1 = 0; int i2 = 0; int istep = 0; double[] v = new double[0]; double[] work = new double[0]; int mx = 0; int i_ = 0; int i1_ = 0; if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 ) { return; } System.Diagnostics.Debug.Assert(fromtheright & zcolumns==m | !fromtheright & zrows==m, "RMatrixBDMultiplyByQ: incorrect Z size!"); // // init // mx = Math.Max(m, n); mx = Math.Max(mx, zrows); mx = Math.Max(mx, zcolumns); v = new double[mx+1]; work = new double[mx+1]; if( m>=n ) { // // setup // if( fromtheright ) { i1 = 0; i2 = n-1; istep = +1; } else { i1 = n-1; i2 = 0; istep = -1; } if( dotranspose ) { i = i1; i1 = i2; i2 = i; istep = -istep; } // // Process // i = i1; do { i1_ = (i) - (1); for(i_=1; i_<=m-i;i_++) { v[i_] = qp[i_+i1_,i]; } v[1] = 1; if( fromtheright ) { reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 0, zrows-1, i, m-1, ref work); } else { reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i, m-1, 0, zcolumns-1, ref work); } i = i+istep; } while( i!=i2+istep ); } else { // // setup // if( fromtheright ) { i1 = 0; i2 = m-2; istep = +1; } else { i1 = m-2; i2 = 0; istep = -1; } if( dotranspose ) { i = i1; i1 = i2; i2 = i; istep = -istep; } // // Process // if( m-1>0 ) { i = i1; do { i1_ = (i+1) - (1); for(i_=1; i_<=m-i-1;i_++) { v[i_] = qp[i_+i1_,i]; } v[1] = 1; if( fromtheright ) { reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 0, zrows-1, i+1, m-1, ref work); } else { reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i+1, m-1, 0, zcolumns-1, ref work); } i = i+istep; } while( i!=i2+istep ); } } } /************************************************************************* Unpacking matrix P which reduces matrix A to bidiagonal form. The subroutine returns transposed matrix P. Input parameters: QP - matrices Q and P in compact form. Output of ToBidiagonal subroutine. M - number of rows in matrix A. N - number of columns in matrix A. TAUP - scalar factors which are used to form P. Output of ToBidiagonal subroutine. PTRows - required number of rows of matrix P^T. N >= PTRows >= 0. Output parameters: PT - first PTRows columns of matrix P^T Array[0..PTRows-1, 0..N-1] If PTRows=0, the array is not modified. -- ALGLIB -- Copyright 2005-2007 by Bochkanov Sergey *************************************************************************/ public static void rmatrixbdunpackpt(ref double[,] qp, int m, int n, ref double[] taup, int ptrows, ref double[,] pt) { int i = 0; int j = 0; System.Diagnostics.Debug.Assert(ptrows<=n, "RMatrixBDUnpackPT: PTRows>N!"); System.Diagnostics.Debug.Assert(ptrows>=0, "RMatrixBDUnpackPT: PTRows<0!"); if( m==0 | n==0 | ptrows==0 ) { return; } // // prepare PT // pt = new double[ptrows-1+1, n-1+1]; for(i=0; i<=ptrows-1; i++) { for(j=0; j<=n-1; j++) { if( i==j ) { pt[i,j] = 1; } else { pt[i,j] = 0; } } } // // Calculate // rmatrixbdmultiplybyp(ref qp, m, n, ref taup, ref pt, ptrows, n, true, true); } /************************************************************************* Multiplication by matrix P which reduces matrix A to bidiagonal form. The algorithm allows pre- or post-multiply by P or P'. Input parameters: QP - matrices Q and P in compact form. Output of RMatrixBD subroutine. M - number of rows in matrix A. N - number of columns in matrix A. TAUP - scalar factors which are used to form P. Output of RMatrixBD subroutine. Z - multiplied matrix. Array whose indexes range within [0..ZRows-1,0..ZColumns-1]. ZRows - number of rows in matrix Z. If FromTheRight=False, ZRows=N, otherwise ZRows can be arbitrary. ZColumns - number of columns in matrix Z. If FromTheRight=True, ZColumns=N, otherwise ZColumns can be arbitrary. FromTheRight - pre- or post-multiply. DoTranspose - multiply by P or P'. Output parameters: Z - product of Z and P. Array whose indexes range within [0..ZRows-1,0..ZColumns-1]. If ZRows=0 or ZColumns=0, the array is not modified. -- ALGLIB -- Copyright 2005-2007 by Bochkanov Sergey *************************************************************************/ public static void rmatrixbdmultiplybyp(ref double[,] qp, int m, int n, ref double[] taup, ref double[,] z, int zrows, int zcolumns, bool fromtheright, bool dotranspose) { int i = 0; double[] v = new double[0]; double[] work = new double[0]; int mx = 0; int i1 = 0; int i2 = 0; int istep = 0; int i_ = 0; int i1_ = 0; if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 ) { return; } System.Diagnostics.Debug.Assert(fromtheright & zcolumns==n | !fromtheright & zrows==n, "RMatrixBDMultiplyByP: incorrect Z size!"); // // init // mx = Math.Max(m, n); mx = Math.Max(mx, zrows); mx = Math.Max(mx, zcolumns); v = new double[mx+1]; work = new double[mx+1]; v = new double[mx+1]; work = new double[mx+1]; if( m>=n ) { // // setup // if( fromtheright ) { i1 = n-2; i2 = 0; istep = -1; } else { i1 = 0; i2 = n-2; istep = +1; } if( !dotranspose ) { i = i1; i1 = i2; i2 = i; istep = -istep; } // // Process // if( n-1>0 ) { i = i1; do { i1_ = (i+1) - (1); for(i_=1; i_<=n-1-i;i_++) { v[i_] = qp[i,i_+i1_]; } v[1] = 1; if( fromtheright ) { reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 0, zrows-1, i+1, n-1, ref work); } else { reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i+1, n-1, 0, zcolumns-1, ref work); } i = i+istep; } while( i!=i2+istep ); } } else { // // setup // if( fromtheright ) { i1 = m-1; i2 = 0; istep = -1; } else { i1 = 0; i2 = m-1; istep = +1; } if( !dotranspose ) { i = i1; i1 = i2; i2 = i; istep = -istep; } // // Process // i = i1; do { i1_ = (i) - (1); for(i_=1; i_<=n-i;i_++) { v[i_] = qp[i,i_+i1_]; } v[1] = 1; if( fromtheright ) { reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 0, zrows-1, i, n-1, ref work); } else { reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i, n-1, 0, zcolumns-1, ref work); } i = i+istep; } while( i!=i2+istep ); } } /************************************************************************* Unpacking of the main and secondary diagonals of bidiagonal decomposition of matrix A. Input parameters: B - output of RMatrixBD subroutine. M - number of rows in matrix B. N - number of columns in matrix B. Output parameters: IsUpper - True, if the matrix is upper bidiagonal. otherwise IsUpper is False. D - the main diagonal. Array whose index ranges within [0..Min(M,N)-1]. E - the secondary diagonal (upper or lower, depending on the value of IsUpper). Array index ranges within [0..Min(M,N)-1], the last element is not used. -- ALGLIB -- Copyright 2005-2007 by Bochkanov Sergey *************************************************************************/ public static void rmatrixbdunpackdiagonals(ref double[,] b, int m, int n, ref bool isupper, ref double[] d, ref double[] e) { int i = 0; isupper = m>=n; if( m<=0 | n<=0 ) { return; } if( isupper ) { d = new double[n-1+1]; e = new double[n-1+1]; for(i=0; i<=n-2; i++) { d[i] = b[i,i]; e[i] = b[i,i+1]; } d[n-1] = b[n-1,n-1]; } else { d = new double[m-1+1]; e = new double[m-1+1]; for(i=0; i<=m-2; i++) { d[i] = b[i,i]; e[i] = b[i+1,i]; } d[m-1] = b[m-1,m-1]; } } public static void tobidiagonal(ref double[,] a, int m, int n, ref double[] tauq, ref double[] taup) { double[] work = new double[0]; double[] t = new double[0]; int minmn = 0; int maxmn = 0; int i = 0; double ltau = 0; int mmip1 = 0; int nmi = 0; int ip1 = 0; int nmip1 = 0; int mmi = 0; int i_ = 0; int i1_ = 0; minmn = Math.Min(m, n); maxmn = Math.Max(m, n); work = new double[maxmn+1]; t = new double[maxmn+1]; taup = new double[minmn+1]; tauq = new double[minmn+1]; if( m>=n ) { // // Reduce to upper bidiagonal form // for(i=1; i<=n; i++) { // // Generate elementary reflector H(i) to annihilate A(i+1:m,i) // mmip1 = m-i+1; i1_ = (i) - (1); for(i_=1; i_<=mmip1;i_++) { t[i_] = a[i_+i1_,i]; } reflections.generatereflection(ref t, mmip1, ref ltau); tauq[i] = ltau; i1_ = (1) - (i); for(i_=i; i_<=m;i_++) { a[i_,i] = t[i_+i1_]; } t[1] = 1; // // Apply H(i) to A(i:m,i+1:n) from the left // reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i, m, i+1, n, ref work); if( iM!"); if( m==0 | n==0 | qcolumns==0 ) { return; } // // init // q = new double[m+1, qcolumns+1]; v = new double[m+1]; work = new double[qcolumns+1]; // // prepare Q // for(i=1; i<=m; i++) { for(j=1; j<=qcolumns; j++) { if( i==j ) { q[i,j] = 1; } else { q[i,j] = 0; } } } if( m>=n ) { for(i=Math.Min(n, qcolumns); i>=1; i--) { vm = m-i+1; i1_ = (i) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = qp[i_+i1_,i]; } v[1] = 1; reflections.applyreflectionfromtheleft(ref q, tauq[i], ref v, i, m, 1, qcolumns, ref work); } } else { for(i=Math.Min(m-1, qcolumns-1); i>=1; i--) { vm = m-i; ip1 = i+1; i1_ = (ip1) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = qp[i_+i1_,i]; } v[1] = 1; reflections.applyreflectionfromtheleft(ref q, tauq[i], ref v, i+1, m, 1, qcolumns, ref work); } } } public static void multiplybyqfrombidiagonal(ref double[,] qp, int m, int n, ref double[] tauq, ref double[,] z, int zrows, int zcolumns, bool fromtheright, bool dotranspose) { int i = 0; int ip1 = 0; int i1 = 0; int i2 = 0; int istep = 0; double[] v = new double[0]; double[] work = new double[0]; int vm = 0; int mx = 0; int i_ = 0; int i1_ = 0; if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 ) { return; } System.Diagnostics.Debug.Assert(fromtheright & zcolumns==m | !fromtheright & zrows==m, "MultiplyByQFromBidiagonal: incorrect Z size!"); // // init // mx = Math.Max(m, n); mx = Math.Max(mx, zrows); mx = Math.Max(mx, zcolumns); v = new double[mx+1]; work = new double[mx+1]; if( m>=n ) { // // setup // if( fromtheright ) { i1 = 1; i2 = n; istep = +1; } else { i1 = n; i2 = 1; istep = -1; } if( dotranspose ) { i = i1; i1 = i2; i2 = i; istep = -istep; } // // Process // i = i1; do { vm = m-i+1; i1_ = (i) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = qp[i_+i1_,i]; } v[1] = 1; if( fromtheright ) { reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 1, zrows, i, m, ref work); } else { reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i, m, 1, zcolumns, ref work); } i = i+istep; } while( i!=i2+istep ); } else { // // setup // if( fromtheright ) { i1 = 1; i2 = m-1; istep = +1; } else { i1 = m-1; i2 = 1; istep = -1; } if( dotranspose ) { i = i1; i1 = i2; i2 = i; istep = -istep; } // // Process // if( m-1>0 ) { i = i1; do { vm = m-i; ip1 = i+1; i1_ = (ip1) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = qp[i_+i1_,i]; } v[1] = 1; if( fromtheright ) { reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 1, zrows, i+1, m, ref work); } else { reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i+1, m, 1, zcolumns, ref work); } i = i+istep; } while( i!=i2+istep ); } } } public static void unpackptfrombidiagonal(ref double[,] qp, int m, int n, ref double[] taup, int ptrows, ref double[,] pt) { int i = 0; int j = 0; int ip1 = 0; double[] v = new double[0]; double[] work = new double[0]; int vm = 0; int i_ = 0; int i1_ = 0; System.Diagnostics.Debug.Assert(ptrows<=n, "UnpackPTFromBidiagonal: PTRows>N!"); if( m==0 | n==0 | ptrows==0 ) { return; } // // init // pt = new double[ptrows+1, n+1]; v = new double[n+1]; work = new double[ptrows+1]; // // prepare PT // for(i=1; i<=ptrows; i++) { for(j=1; j<=n; j++) { if( i==j ) { pt[i,j] = 1; } else { pt[i,j] = 0; } } } if( m>=n ) { for(i=Math.Min(n-1, ptrows-1); i>=1; i--) { vm = n-i; ip1 = i+1; i1_ = (ip1) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = qp[i,i_+i1_]; } v[1] = 1; reflections.applyreflectionfromtheright(ref pt, taup[i], ref v, 1, ptrows, i+1, n, ref work); } } else { for(i=Math.Min(m, ptrows); i>=1; i--) { vm = n-i+1; i1_ = (i) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = qp[i,i_+i1_]; } v[1] = 1; reflections.applyreflectionfromtheright(ref pt, taup[i], ref v, 1, ptrows, i, n, ref work); } } } public static void multiplybypfrombidiagonal(ref double[,] qp, int m, int n, ref double[] taup, ref double[,] z, int zrows, int zcolumns, bool fromtheright, bool dotranspose) { int i = 0; int ip1 = 0; double[] v = new double[0]; double[] work = new double[0]; int vm = 0; int mx = 0; int i1 = 0; int i2 = 0; int istep = 0; int i_ = 0; int i1_ = 0; if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 ) { return; } System.Diagnostics.Debug.Assert(fromtheright & zcolumns==n | !fromtheright & zrows==n, "MultiplyByQFromBidiagonal: incorrect Z size!"); // // init // mx = Math.Max(m, n); mx = Math.Max(mx, zrows); mx = Math.Max(mx, zcolumns); v = new double[mx+1]; work = new double[mx+1]; v = new double[mx+1]; work = new double[mx+1]; if( m>=n ) { // // setup // if( fromtheright ) { i1 = n-1; i2 = 1; istep = -1; } else { i1 = 1; i2 = n-1; istep = +1; } if( !dotranspose ) { i = i1; i1 = i2; i2 = i; istep = -istep; } // // Process // if( n-1>0 ) { i = i1; do { vm = n-i; ip1 = i+1; i1_ = (ip1) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = qp[i,i_+i1_]; } v[1] = 1; if( fromtheright ) { reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 1, zrows, i+1, n, ref work); } else { reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i+1, n, 1, zcolumns, ref work); } i = i+istep; } while( i!=i2+istep ); } } else { // // setup // if( fromtheright ) { i1 = m; i2 = 1; istep = -1; } else { i1 = 1; i2 = m; istep = +1; } if( !dotranspose ) { i = i1; i1 = i2; i2 = i; istep = -istep; } // // Process // i = i1; do { vm = n-i+1; i1_ = (i) - (1); for(i_=1; i_<=vm;i_++) { v[i_] = qp[i,i_+i1_]; } v[1] = 1; if( fromtheright ) { reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 1, zrows, i, n, ref work); } else { reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i, n, 1, zcolumns, ref work); } i = i+istep; } while( i!=i2+istep ); } } public static void unpackdiagonalsfrombidiagonal(ref double[,] b, int m, int n, ref bool isupper, ref double[] d, ref double[] e) { int i = 0; isupper = m>=n; if( m==0 | n==0 ) { return; } if( isupper ) { d = new double[n+1]; e = new double[n+1]; for(i=1; i<=n-1; i++) { d[i] = b[i,i]; e[i] = b[i,i+1]; } d[n] = b[n,n]; } else { d = new double[m+1]; e = new double[m+1]; for(i=1; i<=m-1; i++) { d[i] = b[i,i]; e[i] = b[i+1,i]; } d[m] = b[m,m]; } } } }