/************************************************************************* Copyright (c) 2009, Sergey Bochkanov (ALGLIB project). >>> SOURCE LICENSE >>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation (www.fsf.org); either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses >>> END OF LICENSE >>> *************************************************************************/ using System; namespace alglib { public class ftbase { public struct ftplan { public int[] plan; public double[] precomputed; public double[] tmpbuf; public double[] stackbuf; }; public const int ftbaseplanentrysize = 8; public const int ftbasecffttask = 0; public const int ftbaserfhttask = 1; public const int ftbaserffttask = 2; public const int fftcooleytukeyplan = 0; public const int fftbluesteinplan = 1; public const int fftcodeletplan = 2; public const int fhtcooleytukeyplan = 3; public const int fhtcodeletplan = 4; public const int fftrealcooleytukeyplan = 5; public const int fftemptyplan = 6; public const int fhtn2plan = 999; public const int ftbaseupdatetw = 4; public const int ftbasecodeletmax = 5; public const int ftbasecodeletrecommended = 5; public const double ftbaseinefficiencyfactor = 1.3; public const int ftbasemaxsmoothfactor = 5; /************************************************************************* This subroutine generates FFT plan - a decomposition of a N-length FFT to the more simpler operations. Plan consists of the root entry and the child entries. Subroutine parameters: N task size Output parameters: Plan plan -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ public static void ftbasegeneratecomplexfftplan(int n, ref ftplan plan) { int planarraysize = 0; int plansize = 0; int precomputedsize = 0; int tmpmemsize = 0; int stackmemsize = 0; int stackptr = 0; planarraysize = 1; plansize = 0; precomputedsize = 0; stackmemsize = 0; stackptr = 0; tmpmemsize = 2*n; plan.plan = new int[planarraysize]; ftbasegenerateplanrec(n, ftbasecffttask, ref plan, ref plansize, ref precomputedsize, ref planarraysize, ref tmpmemsize, ref stackmemsize, stackptr); System.Diagnostics.Debug.Assert(stackptr==0, "Internal error in FTBaseGenerateComplexFFTPlan: stack ptr!"); plan.stackbuf = new double[Math.Max(stackmemsize, 1)]; plan.tmpbuf = new double[Math.Max(tmpmemsize, 1)]; plan.precomputed = new double[Math.Max(precomputedsize, 1)]; stackptr = 0; ftbaseprecomputeplanrec(ref plan, 0, stackptr); System.Diagnostics.Debug.Assert(stackptr==0, "Internal error in FTBaseGenerateComplexFFTPlan: stack ptr!"); } /************************************************************************* Generates real FFT plan *************************************************************************/ public static void ftbasegeneraterealfftplan(int n, ref ftplan plan) { int planarraysize = 0; int plansize = 0; int precomputedsize = 0; int tmpmemsize = 0; int stackmemsize = 0; int stackptr = 0; planarraysize = 1; plansize = 0; precomputedsize = 0; stackmemsize = 0; stackptr = 0; tmpmemsize = 2*n; plan.plan = new int[planarraysize]; ftbasegenerateplanrec(n, ftbaserffttask, ref plan, ref plansize, ref precomputedsize, ref planarraysize, ref tmpmemsize, ref stackmemsize, stackptr); System.Diagnostics.Debug.Assert(stackptr==0, "Internal error in FTBaseGenerateRealFFTPlan: stack ptr!"); plan.stackbuf = new double[Math.Max(stackmemsize, 1)]; plan.tmpbuf = new double[Math.Max(tmpmemsize, 1)]; plan.precomputed = new double[Math.Max(precomputedsize, 1)]; stackptr = 0; ftbaseprecomputeplanrec(ref plan, 0, stackptr); System.Diagnostics.Debug.Assert(stackptr==0, "Internal error in FTBaseGenerateRealFFTPlan: stack ptr!"); } /************************************************************************* Generates real FHT plan *************************************************************************/ public static void ftbasegeneraterealfhtplan(int n, ref ftplan plan) { int planarraysize = 0; int plansize = 0; int precomputedsize = 0; int tmpmemsize = 0; int stackmemsize = 0; int stackptr = 0; planarraysize = 1; plansize = 0; precomputedsize = 0; stackmemsize = 0; stackptr = 0; tmpmemsize = n; plan.plan = new int[planarraysize]; ftbasegenerateplanrec(n, ftbaserfhttask, ref plan, ref plansize, ref precomputedsize, ref planarraysize, ref tmpmemsize, ref stackmemsize, stackptr); System.Diagnostics.Debug.Assert(stackptr==0, "Internal error in FTBaseGenerateRealFHTPlan: stack ptr!"); plan.stackbuf = new double[Math.Max(stackmemsize, 1)]; plan.tmpbuf = new double[Math.Max(tmpmemsize, 1)]; plan.precomputed = new double[Math.Max(precomputedsize, 1)]; stackptr = 0; ftbaseprecomputeplanrec(ref plan, 0, stackptr); System.Diagnostics.Debug.Assert(stackptr==0, "Internal error in FTBaseGenerateRealFHTPlan: stack ptr!"); } /************************************************************************* This subroutine executes FFT/FHT plan. If Plan is a: * complex FFT plan - sizeof(A)=2*N, A contains interleaved real/imaginary values * real FFT plan - sizeof(A)=2*N, A contains real values interleaved with zeros * real FHT plan - sizeof(A)=2*N, A contains real values interleaved with zeros -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ public static void ftbaseexecuteplan(ref double[] a, int aoffset, int n, ref ftplan plan) { int stackptr = 0; stackptr = 0; ftbaseexecuteplanrec(ref a, aoffset, ref plan, 0, stackptr); } /************************************************************************* Recurrent subroutine for the FTBaseExecutePlan Parameters: A FFT'ed array AOffset offset of the FFT'ed part (distance is measured in doubles) -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ public static void ftbaseexecuteplanrec(ref double[] a, int aoffset, ref ftplan plan, int entryoffset, int stackptr) { int i = 0; int j = 0; int k = 0; int idx = 0; int n1 = 0; int n2 = 0; int n = 0; int m = 0; int offs = 0; int offs1 = 0; int offs2 = 0; int offsa = 0; int offsb = 0; int offsp = 0; double hk = 0; double hnk = 0; double x = 0; double y = 0; double bx = 0; double by = 0; double v = 0; double[] emptyarray = new double[0]; double a0x = 0; double a0y = 0; double a1x = 0; double a1y = 0; double a2x = 0; double a2y = 0; double a3x = 0; double a3y = 0; double a4x = 0; double a4y = 0; double v0 = 0; double v1 = 0; double v2 = 0; double v3 = 0; double t1x = 0; double t1y = 0; double t2x = 0; double t2y = 0; double t3x = 0; double t3y = 0; double t4x = 0; double t4y = 0; double t5x = 0; double t5y = 0; double m1x = 0; double m1y = 0; double m2x = 0; double m2y = 0; double m3x = 0; double m3y = 0; double m4x = 0; double m4y = 0; double m5x = 0; double m5y = 0; double s1x = 0; double s1y = 0; double s2x = 0; double s2y = 0; double s3x = 0; double s3y = 0; double s4x = 0; double s4y = 0; double s5x = 0; double s5y = 0; double c1 = 0; double c2 = 0; double c3 = 0; double c4 = 0; double c5 = 0; double[] tmp = new double[0]; int i_ = 0; int i1_ = 0; if( plan.plan[entryoffset+3]==fftemptyplan ) { return; } if( plan.plan[entryoffset+3]==fftcooleytukeyplan ) { // // Cooley-Tukey plan // * transposition // * row-wise FFT // * twiddle factors: // - TwBase is a basis twiddle factor for I=1, J=1 // - TwRow is a twiddle factor for a second element in a row (J=1) // - Tw is a twiddle factor for a current element // * transposition again // * row-wise FFT again // n1 = plan.plan[entryoffset+1]; n2 = plan.plan[entryoffset+2]; internalcomplexlintranspose(ref a, n1, n2, aoffset, ref plan.tmpbuf); for(i=0; i<=n2-1; i++) { ftbaseexecuteplanrec(ref a, aoffset+i*n1*2, ref plan, plan.plan[entryoffset+5], stackptr); } ffttwcalc(ref a, aoffset, n1, n2); internalcomplexlintranspose(ref a, n2, n1, aoffset, ref plan.tmpbuf); for(i=0; i<=n1-1; i++) { ftbaseexecuteplanrec(ref a, aoffset+i*n2*2, ref plan, plan.plan[entryoffset+6], stackptr); } internalcomplexlintranspose(ref a, n1, n2, aoffset, ref plan.tmpbuf); return; } if( plan.plan[entryoffset+3]==fftrealcooleytukeyplan ) { // // Cooley-Tukey plan // * transposition // * row-wise FFT // * twiddle factors: // - TwBase is a basis twiddle factor for I=1, J=1 // - TwRow is a twiddle factor for a second element in a row (J=1) // - Tw is a twiddle factor for a current element // * transposition again // * row-wise FFT again // n1 = plan.plan[entryoffset+1]; n2 = plan.plan[entryoffset+2]; internalcomplexlintranspose(ref a, n2, n1, aoffset, ref plan.tmpbuf); for(i=0; i<=n1/2-1; i++) { // // pack two adjacent smaller real FFT's together, // make one complex FFT, // unpack result // offs = aoffset+2*i*n2*2; for(k=0; k<=n2-1; k++) { a[offs+2*k+1] = a[offs+2*n2+2*k+0]; } ftbaseexecuteplanrec(ref a, offs, ref plan, plan.plan[entryoffset+6], stackptr); plan.tmpbuf[0] = a[offs+0]; plan.tmpbuf[1] = 0; plan.tmpbuf[2*n2+0] = a[offs+1]; plan.tmpbuf[2*n2+1] = 0; for(k=1; k<=n2-1; k++) { offs1 = 2*k; offs2 = 2*n2+2*k; hk = a[offs+2*k+0]; hnk = a[offs+2*(n2-k)+0]; plan.tmpbuf[offs1+0] = +(0.5*(hk+hnk)); plan.tmpbuf[offs2+1] = -(0.5*(hk-hnk)); hk = a[offs+2*k+1]; hnk = a[offs+2*(n2-k)+1]; plan.tmpbuf[offs2+0] = +(0.5*(hk+hnk)); plan.tmpbuf[offs1+1] = +(0.5*(hk-hnk)); } i1_ = (0) - (offs); for(i_=offs; i_<=offs+2*n2*2-1;i_++) { a[i_] = plan.tmpbuf[i_+i1_]; } } if( n1%2!=0 ) { ftbaseexecuteplanrec(ref a, aoffset+(n1-1)*n2*2, ref plan, plan.plan[entryoffset+6], stackptr); } ffttwcalc(ref a, aoffset, n2, n1); internalcomplexlintranspose(ref a, n1, n2, aoffset, ref plan.tmpbuf); for(i=0; i<=n2-1; i++) { ftbaseexecuteplanrec(ref a, aoffset+i*n1*2, ref plan, plan.plan[entryoffset+5], stackptr); } internalcomplexlintranspose(ref a, n2, n1, aoffset, ref plan.tmpbuf); return; } if( plan.plan[entryoffset+3]==fhtcooleytukeyplan ) { // // Cooley-Tukey FHT plan: // * transpose \ // * smaller FHT's | // * pre-process | // * multiply by twiddle factors | corresponds to multiplication by H1 // * post-process | // * transpose again / // * multiply by H2 (smaller FHT's) // * final transposition // // For more details see Vitezslav Vesely, "Fast algorithms // of Fourier and Hartley transform and their implementation in MATLAB", // page 31. // n1 = plan.plan[entryoffset+1]; n2 = plan.plan[entryoffset+2]; n = n1*n2; internalreallintranspose(ref a, n1, n2, aoffset, ref plan.tmpbuf); for(i=0; i<=n2-1; i++) { ftbaseexecuteplanrec(ref a, aoffset+i*n1, ref plan, plan.plan[entryoffset+5], stackptr); } for(i=0; i<=n2-1; i++) { for(j=0; j<=n1-1; j++) { offsa = aoffset+i*n1; hk = a[offsa+j]; hnk = a[offsa+(n1-j)%n1]; offs = 2*(i*n1+j); plan.tmpbuf[offs+0] = -(0.5*(hnk-hk)); plan.tmpbuf[offs+1] = +(0.5*(hk+hnk)); } } ffttwcalc(ref plan.tmpbuf, 0, n1, n2); for(j=0; j<=n1-1; j++) { a[aoffset+j] = plan.tmpbuf[2*j+0]+plan.tmpbuf[2*j+1]; } if( n2%2==0 ) { offs = 2*(n2/2)*n1; offsa = aoffset+n2/2*n1; for(j=0; j<=n1-1; j++) { a[offsa+j] = plan.tmpbuf[offs+2*j+0]+plan.tmpbuf[offs+2*j+1]; } } for(i=1; i<=(n2+1)/2-1; i++) { offs = 2*i*n1; offs2 = 2*(n2-i)*n1; offsa = aoffset+i*n1; for(j=0; j<=n1-1; j++) { a[offsa+j] = plan.tmpbuf[offs+2*j+1]+plan.tmpbuf[offs2+2*j+0]; } offsa = aoffset+(n2-i)*n1; for(j=0; j<=n1-1; j++) { a[offsa+j] = plan.tmpbuf[offs+2*j+0]+plan.tmpbuf[offs2+2*j+1]; } } internalreallintranspose(ref a, n2, n1, aoffset, ref plan.tmpbuf); for(i=0; i<=n1-1; i++) { ftbaseexecuteplanrec(ref a, aoffset+i*n2, ref plan, plan.plan[entryoffset+6], stackptr); } internalreallintranspose(ref a, n1, n2, aoffset, ref plan.tmpbuf); return; } if( plan.plan[entryoffset+3]==fhtn2plan ) { // // Cooley-Tukey FHT plan // n1 = plan.plan[entryoffset+1]; n2 = plan.plan[entryoffset+2]; n = n1*n2; reffht(ref a, n, aoffset); return; } if( plan.plan[entryoffset+3]==fftcodeletplan ) { n1 = plan.plan[entryoffset+1]; n2 = plan.plan[entryoffset+2]; n = n1*n2; if( n==2 ) { a0x = a[aoffset+0]; a0y = a[aoffset+1]; a1x = a[aoffset+2]; a1y = a[aoffset+3]; v0 = a0x+a1x; v1 = a0y+a1y; v2 = a0x-a1x; v3 = a0y-a1y; a[aoffset+0] = v0; a[aoffset+1] = v1; a[aoffset+2] = v2; a[aoffset+3] = v3; return; } if( n==3 ) { offs = plan.plan[entryoffset+7]; c1 = plan.precomputed[offs+0]; c2 = plan.precomputed[offs+1]; a0x = a[aoffset+0]; a0y = a[aoffset+1]; a1x = a[aoffset+2]; a1y = a[aoffset+3]; a2x = a[aoffset+4]; a2y = a[aoffset+5]; t1x = a1x+a2x; t1y = a1y+a2y; a0x = a0x+t1x; a0y = a0y+t1y; m1x = c1*t1x; m1y = c1*t1y; m2x = c2*(a1y-a2y); m2y = c2*(a2x-a1x); s1x = a0x+m1x; s1y = a0y+m1y; a1x = s1x+m2x; a1y = s1y+m2y; a2x = s1x-m2x; a2y = s1y-m2y; a[aoffset+0] = a0x; a[aoffset+1] = a0y; a[aoffset+2] = a1x; a[aoffset+3] = a1y; a[aoffset+4] = a2x; a[aoffset+5] = a2y; return; } if( n==4 ) { a0x = a[aoffset+0]; a0y = a[aoffset+1]; a1x = a[aoffset+2]; a1y = a[aoffset+3]; a2x = a[aoffset+4]; a2y = a[aoffset+5]; a3x = a[aoffset+6]; a3y = a[aoffset+7]; t1x = a0x+a2x; t1y = a0y+a2y; t2x = a1x+a3x; t2y = a1y+a3y; m2x = a0x-a2x; m2y = a0y-a2y; m3x = a1y-a3y; m3y = a3x-a1x; a[aoffset+0] = t1x+t2x; a[aoffset+1] = t1y+t2y; a[aoffset+4] = t1x-t2x; a[aoffset+5] = t1y-t2y; a[aoffset+2] = m2x+m3x; a[aoffset+3] = m2y+m3y; a[aoffset+6] = m2x-m3x; a[aoffset+7] = m2y-m3y; return; } if( n==5 ) { offs = plan.plan[entryoffset+7]; c1 = plan.precomputed[offs+0]; c2 = plan.precomputed[offs+1]; c3 = plan.precomputed[offs+2]; c4 = plan.precomputed[offs+3]; c5 = plan.precomputed[offs+4]; t1x = a[aoffset+2]+a[aoffset+8]; t1y = a[aoffset+3]+a[aoffset+9]; t2x = a[aoffset+4]+a[aoffset+6]; t2y = a[aoffset+5]+a[aoffset+7]; t3x = a[aoffset+2]-a[aoffset+8]; t3y = a[aoffset+3]-a[aoffset+9]; t4x = a[aoffset+6]-a[aoffset+4]; t4y = a[aoffset+7]-a[aoffset+5]; t5x = t1x+t2x; t5y = t1y+t2y; a[aoffset+0] = a[aoffset+0]+t5x; a[aoffset+1] = a[aoffset+1]+t5y; m1x = c1*t5x; m1y = c1*t5y; m2x = c2*(t1x-t2x); m2y = c2*(t1y-t2y); m3x = -(c3*(t3y+t4y)); m3y = c3*(t3x+t4x); m4x = -(c4*t4y); m4y = c4*t4x; m5x = -(c5*t3y); m5y = c5*t3x; s3x = m3x-m4x; s3y = m3y-m4y; s5x = m3x+m5x; s5y = m3y+m5y; s1x = a[aoffset+0]+m1x; s1y = a[aoffset+1]+m1y; s2x = s1x+m2x; s2y = s1y+m2y; s4x = s1x-m2x; s4y = s1y-m2y; a[aoffset+2] = s2x+s3x; a[aoffset+3] = s2y+s3y; a[aoffset+4] = s4x+s5x; a[aoffset+5] = s4y+s5y; a[aoffset+6] = s4x-s5x; a[aoffset+7] = s4y-s5y; a[aoffset+8] = s2x-s3x; a[aoffset+9] = s2y-s3y; return; } } if( plan.plan[entryoffset+3]==fhtcodeletplan ) { n1 = plan.plan[entryoffset+1]; n2 = plan.plan[entryoffset+2]; n = n1*n2; if( n==2 ) { a0x = a[aoffset+0]; a1x = a[aoffset+1]; a[aoffset+0] = a0x+a1x; a[aoffset+1] = a0x-a1x; return; } if( n==3 ) { offs = plan.plan[entryoffset+7]; c1 = plan.precomputed[offs+0]; c2 = plan.precomputed[offs+1]; a0x = a[aoffset+0]; a1x = a[aoffset+1]; a2x = a[aoffset+2]; t1x = a1x+a2x; a0x = a0x+t1x; m1x = c1*t1x; m2y = c2*(a2x-a1x); s1x = a0x+m1x; a[aoffset+0] = a0x; a[aoffset+1] = s1x-m2y; a[aoffset+2] = s1x+m2y; return; } if( n==4 ) { a0x = a[aoffset+0]; a1x = a[aoffset+1]; a2x = a[aoffset+2]; a3x = a[aoffset+3]; t1x = a0x+a2x; t2x = a1x+a3x; m2x = a0x-a2x; m3y = a3x-a1x; a[aoffset+0] = t1x+t2x; a[aoffset+1] = m2x-m3y; a[aoffset+2] = t1x-t2x; a[aoffset+3] = m2x+m3y; return; } if( n==5 ) { offs = plan.plan[entryoffset+7]; c1 = plan.precomputed[offs+0]; c2 = plan.precomputed[offs+1]; c3 = plan.precomputed[offs+2]; c4 = plan.precomputed[offs+3]; c5 = plan.precomputed[offs+4]; t1x = a[aoffset+1]+a[aoffset+4]; t2x = a[aoffset+2]+a[aoffset+3]; t3x = a[aoffset+1]-a[aoffset+4]; t4x = a[aoffset+3]-a[aoffset+2]; t5x = t1x+t2x; v0 = a[aoffset+0]+t5x; a[aoffset+0] = v0; m2x = c2*(t1x-t2x); m3y = c3*(t3x+t4x); s3y = m3y-c4*t4x; s5y = m3y+c5*t3x; s1x = v0+c1*t5x; s2x = s1x+m2x; s4x = s1x-m2x; a[aoffset+1] = s2x-s3y; a[aoffset+2] = s4x-s5y; a[aoffset+3] = s4x+s5y; a[aoffset+4] = s2x+s3y; return; } } if( plan.plan[entryoffset+3]==fftbluesteinplan ) { // // Bluestein plan: // 1. multiply by precomputed coefficients // 2. make convolution: forward FFT, multiplication by precomputed FFT // and backward FFT. backward FFT is represented as // // invfft(x) = fft(x')'/M // // for performance reasons reduction of inverse FFT to // forward FFT is merged with multiplication of FFT components // and last stage of Bluestein's transformation. // 3. post-multiplication by Bluestein factors // n = plan.plan[entryoffset+1]; m = plan.plan[entryoffset+4]; offs = plan.plan[entryoffset+7]; for(i=stackptr+2*n; i<=stackptr+2*m-1; i++) { plan.stackbuf[i] = 0; } offsp = offs+2*m; offsa = aoffset; offsb = stackptr; for(i=0; i<=n-1; i++) { bx = plan.precomputed[offsp+0]; by = plan.precomputed[offsp+1]; x = a[offsa+0]; y = a[offsa+1]; plan.stackbuf[offsb+0] = x*bx-y*-by; plan.stackbuf[offsb+1] = x*-by+y*bx; offsp = offsp+2; offsa = offsa+2; offsb = offsb+2; } ftbaseexecuteplanrec(ref plan.stackbuf, stackptr, ref plan, plan.plan[entryoffset+5], stackptr+2*2*m); offsb = stackptr; offsp = offs; for(i=0; i<=m-1; i++) { x = plan.stackbuf[offsb+0]; y = plan.stackbuf[offsb+1]; bx = plan.precomputed[offsp+0]; by = plan.precomputed[offsp+1]; plan.stackbuf[offsb+0] = x*bx-y*by; plan.stackbuf[offsb+1] = -(x*by+y*bx); offsb = offsb+2; offsp = offsp+2; } ftbaseexecuteplanrec(ref plan.stackbuf, stackptr, ref plan, plan.plan[entryoffset+5], stackptr+2*2*m); offsb = stackptr; offsp = offs+2*m; offsa = aoffset; for(i=0; i<=n-1; i++) { x = +(plan.stackbuf[offsb+0]/m); y = -(plan.stackbuf[offsb+1]/m); bx = plan.precomputed[offsp+0]; by = plan.precomputed[offsp+1]; a[offsa+0] = x*bx-y*-by; a[offsa+1] = x*-by+y*bx; offsp = offsp+2; offsa = offsa+2; offsb = offsb+2; } return; } } /************************************************************************* Returns good factorization N=N1*N2. Usually N1<=N2 (but not always - small N's may be exception). if N1<>1 then N2<>1. Factorization is chosen depending on task type and codelets we have. -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ public static void ftbasefactorize(int n, int tasktype, ref int n1, ref int n2) { int j = 0; n1 = 0; n2 = 0; // // try to find good codelet // if( n1*n2!=n ) { for(j=ftbasecodeletrecommended; j>=2; j--) { if( n%j==0 ) { n1 = j; n2 = n/j; break; } } } // // try to factorize N // if( n1*n2!=n ) { for(j=ftbasecodeletrecommended+1; j<=n-1; j++) { if( n%j==0 ) { n1 = j; n2 = n/j; break; } } } // // looks like N is prime :( // if( n1*n2!=n ) { n1 = 1; n2 = n; } // // normalize // if( n2==1 & n1!=1 ) { n2 = n1; n1 = 1; } } /************************************************************************* Is number smooth? -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ public static bool ftbaseissmooth(int n) { bool result = new bool(); int i = 0; for(i=2; i<=ftbasemaxsmoothfactor; i++) { while( n%i==0 ) { n = n/i; } } result = n==1; return result; } /************************************************************************* Returns smallest smooth (divisible only by 2, 3, 5) number that is greater than or equal to max(N,2) -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ public static int ftbasefindsmooth(int n) { int result = 0; int best = 0; best = 2; while( bestplanarraysize ) { fftarrayresize(ref plan.plan, ref planarraysize, 8*planarraysize); } entryoffset = plansize; esize = ftbaseplanentrysize; plansize = plansize+esize; // // if N=1, generate empty plan and exit // if( n==1 ) { plan.plan[entryoffset+0] = esize; plan.plan[entryoffset+1] = -1; plan.plan[entryoffset+2] = -1; plan.plan[entryoffset+3] = fftemptyplan; plan.plan[entryoffset+4] = -1; plan.plan[entryoffset+5] = -1; plan.plan[entryoffset+6] = -1; plan.plan[entryoffset+7] = -1; return; } // // generate plans // ftbasefactorize(n, tasktype, ref n1, ref n2); if( tasktype==ftbasecffttask | tasktype==ftbaserffttask ) { // // complex FFT plans // if( n1!=1 ) { // // Cooley-Tukey plan (real or complex) // // Note that child plans are COMPLEX // (whether plan itself is complex or not). // tmpmemsize = Math.Max(tmpmemsize, 2*n1*n2); plan.plan[entryoffset+0] = esize; plan.plan[entryoffset+1] = n1; plan.plan[entryoffset+2] = n2; if( tasktype==ftbasecffttask ) { plan.plan[entryoffset+3] = fftcooleytukeyplan; } else { plan.plan[entryoffset+3] = fftrealcooleytukeyplan; } plan.plan[entryoffset+4] = 0; plan.plan[entryoffset+5] = plansize; ftbasegenerateplanrec(n1, ftbasecffttask, ref plan, ref plansize, ref precomputedsize, ref planarraysize, ref tmpmemsize, ref stackmemsize, stackptr); plan.plan[entryoffset+6] = plansize; ftbasegenerateplanrec(n2, ftbasecffttask, ref plan, ref plansize, ref precomputedsize, ref planarraysize, ref tmpmemsize, ref stackmemsize, stackptr); plan.plan[entryoffset+7] = -1; return; } else { if( n==2 | n==3 | n==4 | n==5 ) { // // hard-coded plan // plan.plan[entryoffset+0] = esize; plan.plan[entryoffset+1] = n1; plan.plan[entryoffset+2] = n2; plan.plan[entryoffset+3] = fftcodeletplan; plan.plan[entryoffset+4] = 0; plan.plan[entryoffset+5] = -1; plan.plan[entryoffset+6] = -1; plan.plan[entryoffset+7] = precomputedsize; if( n==3 ) { precomputedsize = precomputedsize+2; } if( n==5 ) { precomputedsize = precomputedsize+5; } return; } else { // // Bluestein's plan // // Select such M that M>=2*N-1, M is composite, and M's // factors are 2, 3, 5 // k = 2*n2-1; m = ftbasefindsmooth(k); tmpmemsize = Math.Max(tmpmemsize, 2*m); plan.plan[entryoffset+0] = esize; plan.plan[entryoffset+1] = n2; plan.plan[entryoffset+2] = -1; plan.plan[entryoffset+3] = fftbluesteinplan; plan.plan[entryoffset+4] = m; plan.plan[entryoffset+5] = plansize; stackptr = stackptr+2*2*m; stackmemsize = Math.Max(stackmemsize, stackptr); ftbasegenerateplanrec(m, ftbasecffttask, ref plan, ref plansize, ref precomputedsize, ref planarraysize, ref tmpmemsize, ref stackmemsize, stackptr); stackptr = stackptr-2*2*m; plan.plan[entryoffset+6] = -1; plan.plan[entryoffset+7] = precomputedsize; precomputedsize = precomputedsize+2*m+2*n; return; } } } if( tasktype==ftbaserfhttask ) { // // real FHT plans // if( n1!=1 ) { // // Cooley-Tukey plan // // tmpmemsize = Math.Max(tmpmemsize, 2*n1*n2); plan.plan[entryoffset+0] = esize; plan.plan[entryoffset+1] = n1; plan.plan[entryoffset+2] = n2; plan.plan[entryoffset+3] = fhtcooleytukeyplan; plan.plan[entryoffset+4] = 0; plan.plan[entryoffset+5] = plansize; ftbasegenerateplanrec(n1, tasktype, ref plan, ref plansize, ref precomputedsize, ref planarraysize, ref tmpmemsize, ref stackmemsize, stackptr); plan.plan[entryoffset+6] = plansize; ftbasegenerateplanrec(n2, tasktype, ref plan, ref plansize, ref precomputedsize, ref planarraysize, ref tmpmemsize, ref stackmemsize, stackptr); plan.plan[entryoffset+7] = -1; return; } else { // // N2 plan // plan.plan[entryoffset+0] = esize; plan.plan[entryoffset+1] = n1; plan.plan[entryoffset+2] = n2; plan.plan[entryoffset+3] = fhtn2plan; plan.plan[entryoffset+4] = 0; plan.plan[entryoffset+5] = -1; plan.plan[entryoffset+6] = -1; plan.plan[entryoffset+7] = -1; if( n==2 | n==3 | n==4 | n==5 ) { // // hard-coded plan // plan.plan[entryoffset+0] = esize; plan.plan[entryoffset+1] = n1; plan.plan[entryoffset+2] = n2; plan.plan[entryoffset+3] = fhtcodeletplan; plan.plan[entryoffset+4] = 0; plan.plan[entryoffset+5] = -1; plan.plan[entryoffset+6] = -1; plan.plan[entryoffset+7] = precomputedsize; if( n==3 ) { precomputedsize = precomputedsize+2; } if( n==5 ) { precomputedsize = precomputedsize+5; } return; } return; } } } /************************************************************************* Recurrent subroutine for precomputing FFT plans -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ private static void ftbaseprecomputeplanrec(ref ftplan plan, int entryoffset, int stackptr) { int i = 0; int j = 0; int idx = 0; int n1 = 0; int n2 = 0; int n = 0; int m = 0; int offs = 0; double v = 0; double[] emptyarray = new double[0]; double bx = 0; double by = 0; if( plan.plan[entryoffset+3]==fftcooleytukeyplan | plan.plan[entryoffset+3]==fftrealcooleytukeyplan | plan.plan[entryoffset+3]==fhtcooleytukeyplan ) { ftbaseprecomputeplanrec(ref plan, plan.plan[entryoffset+5], stackptr); ftbaseprecomputeplanrec(ref plan, plan.plan[entryoffset+6], stackptr); return; } if( plan.plan[entryoffset+3]==fftcodeletplan | plan.plan[entryoffset+3]==fhtcodeletplan ) { n1 = plan.plan[entryoffset+1]; n2 = plan.plan[entryoffset+2]; n = n1*n2; if( n==3 ) { offs = plan.plan[entryoffset+7]; plan.precomputed[offs+0] = Math.Cos(2*Math.PI/3)-1; plan.precomputed[offs+1] = Math.Sin(2*Math.PI/3); return; } if( n==5 ) { offs = plan.plan[entryoffset+7]; v = 2*Math.PI/5; plan.precomputed[offs+0] = (Math.Cos(v)+Math.Cos(2*v))/2-1; plan.precomputed[offs+1] = (Math.Cos(v)-Math.Cos(2*v))/2; plan.precomputed[offs+2] = -Math.Sin(v); plan.precomputed[offs+3] = -(Math.Sin(v)+Math.Sin(2*v)); plan.precomputed[offs+4] = Math.Sin(v)-Math.Sin(2*v); return; } } if( plan.plan[entryoffset+3]==fftbluesteinplan ) { ftbaseprecomputeplanrec(ref plan, plan.plan[entryoffset+5], stackptr); n = plan.plan[entryoffset+1]; m = plan.plan[entryoffset+4]; offs = plan.plan[entryoffset+7]; for(i=0; i<=2*m-1; i++) { plan.precomputed[offs+i] = 0; } for(i=0; i<=n-1; i++) { bx = Math.Cos(Math.PI*AP.Math.Sqr(i)/n); by = Math.Sin(Math.PI*AP.Math.Sqr(i)/n); plan.precomputed[offs+2*i+0] = bx; plan.precomputed[offs+2*i+1] = by; plan.precomputed[offs+2*m+2*i+0] = bx; plan.precomputed[offs+2*m+2*i+1] = by; if( i>0 ) { plan.precomputed[offs+2*(m-i)+0] = bx; plan.precomputed[offs+2*(m-i)+1] = by; } } ftbaseexecuteplanrec(ref plan.precomputed, offs, ref plan, plan.plan[entryoffset+5], stackptr); return; } } /************************************************************************* Twiddle factors calculation -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ private static void ffttwcalc(ref double[] a, int aoffset, int n1, int n2) { int i = 0; int j = 0; int n = 0; int idx = 0; int offs = 0; double x = 0; double y = 0; double twxm1 = 0; double twy = 0; double twbasexm1 = 0; double twbasey = 0; double twrowxm1 = 0; double twrowy = 0; double tmpx = 0; double tmpy = 0; double v = 0; n = n1*n2; v = -(2*Math.PI/n); twbasexm1 = -(2*AP.Math.Sqr(Math.Sin(0.5*v))); twbasey = Math.Sin(v); twrowxm1 = 0; twrowy = 0; for(i=0; i<=n2-1; i++) { twxm1 = 0; twy = 0; for(j=0; j<=n1-1; j++) { idx = i*n1+j; offs = aoffset+2*idx; x = a[offs+0]; y = a[offs+1]; tmpx = x*twxm1-y*twy; tmpy = x*twy+y*twxm1; a[offs+0] = x+tmpx; a[offs+1] = y+tmpy; // // update Tw: Tw(new) = Tw(old)*TwRow // if( jm ) { // // New partition: // // "A^T -> B" becomes "(A1 A2)^T -> ( B1 ) // ( B2 ) // n1 = n/2; if( n-n1>=8 & n1%8!=0 ) { n1 = n1+(8-n1%8); } System.Diagnostics.Debug.Assert(n-n1>0); ffticltrec(ref a, astart, astride, ref b, bstart, bstride, m, n1); ffticltrec(ref a, astart+2*n1, astride, ref b, bstart+2*n1*bstride, bstride, m, n-n1); } else { // // New partition: // // "A^T -> B" becomes "( A1 )^T -> ( B1 B2 ) // ( A2 ) // m1 = m/2; if( m-m1>=8 & m1%8!=0 ) { m1 = m1+(8-m1%8); } System.Diagnostics.Debug.Assert(m-m1>0); ffticltrec(ref a, astart, astride, ref b, bstart, bstride, m1, n); ffticltrec(ref a, astart+2*m1*astride, astride, ref b, bstart+2*m1, bstride, m-m1, n); } } /************************************************************************* Recurrent subroutine for a InternalRealLinTranspose -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ private static void fftirltrec(ref double[] a, int astart, int astride, ref double[] b, int bstart, int bstride, int m, int n) { int i = 0; int j = 0; int idx1 = 0; int idx2 = 0; int m1 = 0; int n1 = 0; if( m==0 | n==0 ) { return; } if( Math.Max(m, n)<=8 ) { for(i=0; i<=m-1; i++) { idx1 = bstart+i; idx2 = astart+i*astride; for(j=0; j<=n-1; j++) { b[idx1] = a[idx2]; idx1 = idx1+bstride; idx2 = idx2+1; } } return; } if( n>m ) { // // New partition: // // "A^T -> B" becomes "(A1 A2)^T -> ( B1 ) // ( B2 ) // n1 = n/2; if( n-n1>=8 & n1%8!=0 ) { n1 = n1+(8-n1%8); } System.Diagnostics.Debug.Assert(n-n1>0); fftirltrec(ref a, astart, astride, ref b, bstart, bstride, m, n1); fftirltrec(ref a, astart+n1, astride, ref b, bstart+n1*bstride, bstride, m, n-n1); } else { // // New partition: // // "A^T -> B" becomes "( A1 )^T -> ( B1 B2 ) // ( A2 ) // m1 = m/2; if( m-m1>=8 & m1%8!=0 ) { m1 = m1+(8-m1%8); } System.Diagnostics.Debug.Assert(m-m1>0); fftirltrec(ref a, astart, astride, ref b, bstart, bstride, m1, n); fftirltrec(ref a, astart+m1*astride, astride, ref b, bstart+m1, bstride, m-m1, n); } } /************************************************************************* recurrent subroutine for FFTFindSmoothRec -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ private static void ftbasefindsmoothrec(int n, int seed, int leastfactor, ref int best) { System.Diagnostics.Debug.Assert(ftbasemaxsmoothfactor<=5, "FTBaseFindSmoothRec: internal error!"); if( seed>=n ) { best = Math.Min(best, seed); return; } if( leastfactor<=2 ) { ftbasefindsmoothrec(n, seed*2, 2, ref best); } if( leastfactor<=3 ) { ftbasefindsmoothrec(n, seed*3, 3, ref best); } if( leastfactor<=5 ) { ftbasefindsmoothrec(n, seed*5, 5, ref best); } } /************************************************************************* Internal subroutine: array resize -- ALGLIB -- Copyright 01.05.2009 by Bochkanov Sergey *************************************************************************/ private static void fftarrayresize(ref int[] a, ref int asize, int newasize) { int[] tmp = new int[0]; int i = 0; tmp = new int[asize]; for(i=0; i<=asize-1; i++) { tmp[i] = a[i]; } a = new int[newasize]; for(i=0; i<=asize-1; i++) { a[i] = tmp[i]; } asize = newasize; } /************************************************************************* Reference FHT stub *************************************************************************/ private static void reffht(ref double[] a, int n, int offs) { double[] buf = new double[0]; int i = 0; int j = 0; double v = 0; System.Diagnostics.Debug.Assert(n>0, "RefFHTR1D: incorrect N!"); buf = new double[n]; for(i=0; i<=n-1; i++) { v = 0; for(j=0; j<=n-1; j++) { v = v+a[offs+j]*(Math.Cos(2*Math.PI*i*j/n)+Math.Sin(2*Math.PI*i*j/n)); } buf[i] = v; } for(i=0; i<=n-1; i++) { a[offs+i] = buf[i]; } } } }