/************************************************************************* Copyright (c) 2007, Sergey Bochkanov (ALGLIB project). >>> SOURCE LICENSE >>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation (www.fsf.org); either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses >>> END OF LICENSE >>> *************************************************************************/ using System; namespace alglib { public class descriptivestatistics { /************************************************************************* Calculation of the distribution moments: mean, variance, slewness, kurtosis. Input parameters: X - sample. Array with whose indexes range within [0..N-1] N - sample size. Output parameters: Mean - mean. Variance- variance. Skewness- skewness (if variance<>0; zero otherwise). Kurtosis- kurtosis (if variance<>0; zero otherwise). -- ALGLIB -- Copyright 06.09.2006 by Bochkanov Sergey *************************************************************************/ public static void calculatemoments(ref double[] x, int n, ref double mean, ref double variance, ref double skewness, ref double kurtosis) { int i = 0; double v = 0; double v1 = 0; double v2 = 0; double stddev = 0; mean = 0; variance = 0; skewness = 0; kurtosis = 0; stddev = 0; if( n<=0 ) { return; } // // Mean // for(i=0; i<=n-1; i++) { mean = mean+x[i]; } mean = mean/n; // // Variance (using corrected two-pass algorithm) // if( n!=1 ) { v1 = 0; for(i=0; i<=n-1; i++) { v1 = v1+AP.Math.Sqr(x[i]-mean); } v2 = 0; for(i=0; i<=n-1; i++) { v2 = v2+(x[i]-mean); } v2 = AP.Math.Sqr(v2)/n; variance = (v1-v2)/(n-1); if( (double)(variance)<(double)(0) ) { variance = 0; } stddev = Math.Sqrt(variance); } // // Skewness and kurtosis // if( (double)(stddev)!=(double)(0) ) { for(i=0; i<=n-1; i++) { v = (x[i]-mean)/stddev; v2 = AP.Math.Sqr(v); skewness = skewness+v2*v; kurtosis = kurtosis+AP.Math.Sqr(v2); } skewness = skewness/n; kurtosis = kurtosis/n-3; } } /************************************************************************* ADev Input parameters: X - sample (array indexes: [0..N-1]) N - sample size Output parameters: ADev- ADev -- ALGLIB -- Copyright 06.09.2006 by Bochkanov Sergey *************************************************************************/ public static void calculateadev(ref double[] x, int n, ref double adev) { int i = 0; double mean = 0; mean = 0; adev = 0; if( n<=0 ) { return; } // // Mean // for(i=0; i<=n-1; i++) { mean = mean+x[i]; } mean = mean/n; // // ADev // for(i=0; i<=n-1; i++) { adev = adev+Math.Abs(x[i]-mean); } adev = adev/n; } /************************************************************************* Median calculation. Input parameters: X - sample (array indexes: [0..N-1]) N - sample size Output parameters: Median -- ALGLIB -- Copyright 06.09.2006 by Bochkanov Sergey *************************************************************************/ public static void calculatemedian(double[] x, int n, ref double median) { int i = 0; int ir = 0; int j = 0; int l = 0; int midp = 0; int k = 0; double a = 0; double temp = 0; double tval = 0; x = (double[])x.Clone(); // // Some degenerate cases // median = 0; if( n<=0 ) { return; } if( n==1 ) { median = x[0]; return; } if( n==2 ) { median = 0.5*(x[0]+x[1]); return; } // // Common case, N>=3. // Choose X[(N-1)/2] // l = 0; ir = n-1; k = (n-1)/2; while( true ) { if( ir<=l+1 ) { // // 1 or 2 elements in partition // if( ir==l+1 & (double)(x[ir])<(double)(x[l]) ) { tval = x[l]; x[l] = x[ir]; x[ir] = tval; } break; } else { midp = (l+ir)/2; tval = x[midp]; x[midp] = x[l+1]; x[l+1] = tval; if( (double)(x[l])>(double)(x[ir]) ) { tval = x[l]; x[l] = x[ir]; x[ir] = tval; } if( (double)(x[l+1])>(double)(x[ir]) ) { tval = x[l+1]; x[l+1] = x[ir]; x[ir] = tval; } if( (double)(x[l])>(double)(x[l+1]) ) { tval = x[l]; x[l] = x[l+1]; x[l+1] = tval; } i = l+1; j = ir; a = x[l+1]; while( true ) { do { i = i+1; } while( (double)(x[i])<(double)(a) ); do { j = j-1; } while( (double)(x[j])>(double)(a) ); if( j=k ) { ir = j-1; } if( j<=k ) { l = i; } } } // // If N is odd, return result // if( n%2==1 ) { median = x[k]; return; } a = x[n-1]; for(i=k+1; i<=n-1; i++) { if( (double)(x[i])<(double)(a) ) { a = x[i]; } } median = 0.5*(x[k]+a); } /************************************************************************* Percentile calculation. Input parameters: X - sample (array indexes: [0..N-1]) N - sample size, N>1 P - percentile (0<=P<=1) Output parameters: V - percentile -- ALGLIB -- Copyright 01.03.2008 by Bochkanov Sergey *************************************************************************/ public static void calculatepercentile(double[] x, int n, double p, ref double v) { int i1 = 0; double t = 0; x = (double[])x.Clone(); System.Diagnostics.Debug.Assert(n>1, "CalculatePercentile: N<=1!"); System.Diagnostics.Debug.Assert((double)(p)>=(double)(0) & (double)(p)<=(double)(1), "CalculatePercentile: incorrect P!"); internalstatheapsort(ref x, n); if( (double)(p)==(double)(0) ) { v = x[0]; return; } if( (double)(p)==(double)(1) ) { v = x[n-1]; return; } t = p*(n-1); i1 = (int)Math.Floor(t); t = t-(int)Math.Floor(t); v = x[i1]*(1-t)+x[i1+1]*t; } private static void internalstatheapsort(ref double[] arr, int n) { int i = 0; int j = 0; int k = 0; int t = 0; double tmp = 0; if( n==1 ) { return; } i = 2; do { t = i; while( t!=1 ) { k = t/2; if( (double)(arr[k-1])>=(double)(arr[t-1]) ) { t = 1; } else { tmp = arr[k-1]; arr[k-1] = arr[t-1]; arr[t-1] = tmp; t = k; } } i = i+1; } while( i<=n ); i = n-1; do { tmp = arr[i]; arr[i] = arr[0]; arr[0] = tmp; t = 1; while( t!=0 ) { k = 2*t; if( k>i ) { t = 0; } else { if( k(double)(arr[k-1]) ) { k = k+1; } } if( (double)(arr[t-1])>=(double)(arr[k-1]) ) { t = 0; } else { tmp = arr[k-1]; arr[k-1] = arr[t-1]; arr[t-1] = tmp; t = k; } } } i = i-1; } while( i>=1 ); } } }