#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Operators;
using HeuristicLab.Random;
using HeuristicLab.Data;
using HeuristicLab.Constraints;
using HeuristicLab.Functions;
using System.Diagnostics;
namespace HeuristicLab.StructureIdentification {
public class SizeFairCrossOver : OperatorBase {
private const int MAX_RECOMBINATION_TRIES = 20;
public override string Description {
get {
return @"Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
until a valid configuration is found.";
}
}
public SizeFairCrossOver()
: base() {
AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In));
AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In));
AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New));
AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New));
AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New));
}
public override IOperation Apply(IScope scope) {
MersenneTwister random = GetVariableValue("Random", scope, true);
GPOperatorLibrary opLibrary = GetVariableValue("OperatorLibrary", scope, true);
int maxTreeHeight = GetVariableValue("MaxTreeHeight", scope, true).Data;
int maxTreeSize = GetVariableValue("MaxTreeSize", scope, true).Data;
TreeGardener gardener = new TreeGardener(random, opLibrary);
if((scope.SubScopes.Count % 2) != 0)
throw new InvalidOperationException("Number of parents is not even");
CompositeOperation initOperations = new CompositeOperation();
int children = scope.SubScopes.Count / 2;
for(int i = 0; i < children; i++) {
IScope parent1 = scope.SubScopes[0];
scope.RemoveSubScope(parent1);
IScope parent2 = scope.SubScopes[0];
scope.RemoveSubScope(parent2);
IScope child = new Scope(i.ToString());
IOperation childInitOperation = Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child);
initOperations.AddOperation(childInitOperation);
scope.AddSubScope(child);
}
return initOperations;
}
private IOperation Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight,
IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) {
List newBranches;
IFunctionTree newTree = Cross(gardener, parent1, parent2,
random, maxTreeSize, maxTreeHeight, out newBranches);
int newTreeSize = newTree.Size;
int newTreeHeight = newTree.Height;
child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree));
child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTreeSize)));
child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTreeHeight)));
// check if the new tree is valid and if the height of is still in the allowed bounds (we are not so strict for the max-size)
Debug.Assert(gardener.IsValidTree(newTree) && newTreeHeight <= maxTreeHeight && newTreeSize <= maxTreeSize);
return gardener.CreateInitializationOperation(newBranches, child);
}
private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight, out List newBranches) {
IFunctionTree tree0 = f.GetVariableValue("FunctionTree", false);
int tree0Height = f.GetVariableValue("TreeHeight", false).Data;
int tree0Size = f.GetVariableValue("TreeSize", false).Data;
IFunctionTree tree1 = g.GetVariableValue("FunctionTree", false);
int tree1Height = g.GetVariableValue("TreeHeight", false).Data;
int tree1Size = g.GetVariableValue("TreeSize", false).Data;
if(tree0Size == 1 && tree1Size == 1) {
return CombineTerminals(gardener, tree0, tree1, random, maxTreeHeight, out newBranches);
} else {
newBranches = new List();
// we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal
// in case both trees are higher than 1 we swap the trees with probability 50%
if(tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) {
IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp;
int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight;
int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize;
}
// save the roots because later on we change tree0 and tree1 while searching a valid tree configuration
IFunctionTree root0 = tree0;
IFunctionTree root1 = tree1;
int root0Height = tree0Height;
int root1Height = tree1Height;
int rootSize = tree0Size;
// select a random suboperators of the two trees at a random level
int tree0Level = random.Next(root0Height - 1); // since we checked before that the height of tree0 is > 1 this is OK
int tree1Level = random.Next(root1Height);
tree0 = gardener.GetRandomBranch(tree0, tree0Level);
tree1 = gardener.GetRandomBranch(tree1, tree1Level);
// recalculate the size and height of tree1 (the one that we want to insert) because we need to check constraints later on
tree1Size = tree1.Size;
tree1Height = tree1.Height;
List possibleChildIndices = new List();
// Now tree0 is supposed to take tree1 as one if its children. If this is not possible,
// then go down in either of the two trees as far as possible. If even then it is not possible
// to merge the trees then throw an exception
// find the list of allowed indices (regarding allowed sub-trees, maxTreeSize and maxTreeHeight)
for(int i = 0; i < tree0.SubTrees.Count; i++) {
int subTreeSize = tree0.SubTrees[i].Size;
// the index is ok when the function is allowed as sub-tree and we don't violate the maxSize and maxHeight constraints
if(gardener.GetAllowedSubFunctions(tree0.Function, i).Contains(tree1.Function) &&
rootSize - subTreeSize + tree1Size < maxTreeSize &&
tree0Level + tree1Height < maxTreeHeight) {
possibleChildIndices.Add(i);
}
}
int tries = 0;
while(possibleChildIndices.Count == 0) {
if(tries++ > MAX_RECOMBINATION_TRIES) {
if(random.Next() > 0.5) return root1;
else return root0;
}
// we couln't find a possible configuration given the current tree0 and tree1
// possible reasons for this are:
// - tree1 is not allowed as sub-tree of tree0
// - appending tree1 as child of tree0 would create a tree that exceedes the maxTreeHeight
// - replacing any child of tree0 with tree1 woulde create a tree that exceedes the maxTeeSize
// thus we just try until we find a valid configuration
tree0Level = random.Next(root0Height - 1);
tree1Level = random.Next(root1Height);
tree0 = gardener.GetRandomBranch(root0, tree0Level);
tree1 = gardener.GetRandomBranch(root1, tree1Level);
// recalculate the size and height of tree1 (the one that we want to insert) because we need to check constraints later on
tree1Size = tree1.Size;
tree1Height = tree1.Height;
// recalculate the list of possible indices
possibleChildIndices.Clear();
for(int i = 0; i < tree0.SubTrees.Count; i++) {
int subTreeSize = tree0.SubTrees[i].Size;
// when the function is allowed as sub-tree and we don't violate the maxSize and maxHeight constraints
// the index is ok
if(gardener.GetAllowedSubFunctions(tree0.Function, i).Contains(tree1.Function) &&
rootSize - subTreeSize + tree1Size < maxTreeSize &&
tree0Level + tree1Height < maxTreeHeight) {
possibleChildIndices.Add(i);
}
}
}
// replace the existing sub-tree at a random index in tree0 with tree1
int selectedIndex = possibleChildIndices[random.Next(possibleChildIndices.Count)];
tree0.RemoveSubTree(selectedIndex);
tree0.InsertSubTree(selectedIndex, tree1);
return root0;
}
}
// take f and g and create a tree that has f and g as sub-trees
// example
// O
// /|\
// g 2 f
//
private IFunctionTree CombineTerminals(TreeGardener gardener, IFunctionTree f, IFunctionTree g, MersenneTwister random, int maxTreeHeight, out List newBranches) {
newBranches = new List();
// determine the set of possible parent functions
ICollection possibleParents = gardener.GetPossibleParents(new List() { f.Function, g.Function });
if(possibleParents.Count == 0) throw new InvalidProgramException();
// and select a random one
IFunctionTree parent = possibleParents.ElementAt(random.Next(possibleParents.Count())).GetTreeNode();
int nSlots = Math.Max(2, parent.Function.MinArity);
// determine which slot can take which sub-trees
List[] slots = new List[nSlots];
for(int slot = 0; slot < nSlots; slot++) {
ICollection allowedSubFunctions = gardener.GetAllowedSubFunctions(parent.Function, slot);
List allowedTrees = new List();
if(allowedSubFunctions.Contains(f.Function)) allowedTrees.Add(f);
if(allowedSubFunctions.Contains(g.Function)) allowedTrees.Add(g);
slots[slot] = allowedTrees;
}
// fill the slots in the order of degrees of freedom
int[] slotSequence = Enumerable.Range(0, slots.Count()).OrderBy(slot => slots[slot].Count()).ToArray();
// tmp arry to store the tree for each sub-tree slot of the parent
IFunctionTree[] selectedFunctionTrees = new IFunctionTree[nSlots];
// fill the sub-tree slots of the parent starting with the slots that can take potentially both functions (f and g)
for(int i = 0; i < slotSequence.Length; i++) {
int slot = slotSequence[i];
List allowedTrees = slots[slot];
// when neither f nor g fit into the slot => create a new random tree
if(allowedTrees.Count() == 0) {
var allowedFunctions = gardener.GetAllowedSubFunctions(parent.Function, slot);
selectedFunctionTrees[slot] = gardener.CreateRandomTree(allowedFunctions, 1, 1);
newBranches.AddRange(gardener.GetAllSubTrees(selectedFunctionTrees[slot]));
} else {
// select randomly which tree to insert into this slot
IFunctionTree selectedTree = allowedTrees[random.Next(allowedTrees.Count())];
selectedFunctionTrees[slot] = selectedTree;
// remove the tree that we used in this slot from following function-sets
for(int j = i + 1; j < slotSequence.Length; j++) {
int otherSlot = slotSequence[j];
slots[otherSlot].Remove(selectedTree);
}
}
}
// actually append the sub-trees to the parent tree
for(int i = 0; i < selectedFunctionTrees.Length; i++) {
parent.InsertSubTree(i, selectedFunctionTrees[i]);
}
return parent;
}
}
}