using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Random; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Problems.DataAnalysis.Tests { [TestClass] public class IntervalEvaluatorAutoDiffTest { [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffAdd() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var t = parser.Parse("x + y"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var intervals = new Dictionary() { { "x", new Interval(1, 2) }, { "y", new Interval(0, 1) } }; var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(1, r.LowerBound); Assert.AreEqual(3, r.UpperBound); Assert.AreEqual(1.0, lg[0]); // x Assert.AreEqual(2.0, ug[0]); Assert.AreEqual(0.0, lg[1]); // y Assert.AreEqual(1.0, ug[1]); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffMul() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var t = parser.Parse("x * y"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var intervals = new Dictionary() { { "x", new Interval(1, 2) }, { "y", new Interval(0, 1) } }; var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(0, r.LowerBound); Assert.AreEqual(2, r.UpperBound); Assert.AreEqual(0.0, lg[0]); // x Assert.AreEqual(2.0, ug[0]); Assert.AreEqual(0.0, lg[1]); // y Assert.AreEqual(2.0, ug[1]); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffSqr() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var intervals = new Dictionary() { { "x", new Interval(1, 2) }, { "unit", new Interval(0, 1) }, { "neg", new Interval(-1, 0) }, }; var t = parser.Parse("sqr(x)"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(1, r.LowerBound); Assert.AreEqual(4, r.UpperBound); Assert.AreEqual(2.0, lg[0]); // x Assert.AreEqual(8.0, ug[0]); t = parser.Parse("sqr(log(unit))"); paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); r = eval.Evaluate(t, intervals, paramNodes, out lg, out ug); Assert.AreEqual(0.0, r.LowerBound); Assert.AreEqual(double.PositiveInfinity, r.UpperBound); Assert.AreEqual(0.0, lg[0]); // x Assert.AreEqual(double.NaN, ug[0]); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffExp() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var t = parser.Parse("exp(x)"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var intervals = new Dictionary() { { "x", new Interval(1, 2) }, }; var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(Math.Exp(1), r.LowerBound); Assert.AreEqual(Math.Exp(2), r.UpperBound); Assert.AreEqual(Math.Exp(1), lg[0]); // x Assert.AreEqual(Math.Exp(2) * 2, ug[0]); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffSin() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var t = parser.Parse("sin(x)"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var intervals = new Dictionary() { { "x", new Interval(1, 2) }, }; var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(Math.Sin(1), r.LowerBound); // sin(1) < sin(2) Assert.AreEqual(1, r.UpperBound); // 1..2 crosses pi / 2 and sin(pi/2)==1 Assert.AreEqual(Math.Cos(1), lg[0]); // x Assert.AreEqual(0, ug[0]); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffCos() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var intervals = new Dictionary() { { "x", new Interval(3, 4) }, { "z", new Interval(1, 2) } }; var t = parser.Parse("cos(x)"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(-1, r.LowerBound); // 3..4 crosses pi and cos(pi) == -1 Assert.AreEqual(Math.Cos(4), r.UpperBound); // cos(3) < cos(4) Assert.AreEqual(0, lg[0]); // x Assert.AreEqual(-4 * Math.Sin(4), ug[0]); t = parser.Parse("LOG(COS('z'))"); paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); r = eval.Evaluate(t, intervals, paramNodes, out lg, out ug); Assert.AreEqual(double.NaN, r.LowerBound); Assert.AreEqual(Math.Log(Math.Cos(1)), r.UpperBound); Assert.AreEqual(-2 * Math.Sin(2) / Math.Cos(2), lg[0], 1e-5); // x Assert.AreEqual(-1 * Math.Sin(1) / Math.Cos(1), ug[0], 1e-5); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffSqrt() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var t = parser.Parse("sqrt(x)"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var intervals = new Dictionary() { { "x", new Interval(4, 9) }, { "y", new Interval(1, 2) }, { "z", new Interval(0, 1) }, { "eps", new Interval(1e-10, 1) } }; var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(2, r.LowerBound); Assert.AreEqual(3, r.UpperBound); Assert.AreEqual(1.0, lg[0]); // x Assert.AreEqual(1.5, ug[0]); t = parser.Parse("sqrt(y)"); paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); r = eval.Evaluate(t, intervals, paramNodes, out lg, out ug); Assert.AreEqual(1, r.LowerBound); Assert.AreEqual(Math.Sqrt(2), r.UpperBound); Assert.AreEqual(0.5, lg[0]); // y Assert.AreEqual(0.5 * Math.Sqrt(2), ug[0], 1e-5); t = parser.Parse("sqrt(z)"); paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); r = eval.Evaluate(t, intervals, paramNodes, out lg, out ug); Assert.AreEqual(0, r.LowerBound); Assert.AreEqual(1, r.UpperBound); Assert.AreEqual(double.NaN, lg[0]); // z Assert.AreEqual(0.5, ug[0], 1e-5); t = parser.Parse("sqrt(eps)"); paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); r = eval.Evaluate(t, intervals, paramNodes, out lg, out ug); Assert.AreEqual(0.5 * Math.Sqrt(1e-10), lg[0], 1e-5); // --> lim x -> 0 (sqrt(x)) = 0 Assert.AreEqual(0.5, ug[0], 1e-5); t = parser.Parse("sqrt(y - z)"); // 1..2 - 0..1 paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); r = eval.Evaluate(t, intervals, paramNodes, out lg, out ug); Assert.AreEqual(0, r.LowerBound); Assert.AreEqual(Math.Sqrt(2), r.UpperBound); Assert.AreEqual(double.PositiveInfinity, lg[0], 1e-5); // y Assert.AreEqual(1/ Math.Sqrt(2) , ug[0], 1e-5); Assert.AreEqual(double.NegativeInfinity, lg[1], 1e-5); // z Assert.AreEqual(0.0 , ug[1], 1e-5); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffCqrt() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var t = parser.Parse("cuberoot(x)"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var intervals = new Dictionary() { { "x", new Interval(8, 27) }, { "y", new Interval(1, 2) }, { "z", new Interval(0, 1) }, }; var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(2, r.LowerBound); Assert.AreEqual(3, r.UpperBound); Assert.AreEqual(2.0 / 3.0, lg[0]); // x Assert.AreEqual(1.0, ug[0]); t = parser.Parse("cuberoot(y)"); paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); r = eval.Evaluate(t, intervals, paramNodes, out lg, out ug); Assert.AreEqual(Math.Pow(1, 1.0 / 3.0), r.LowerBound); Assert.AreEqual(Math.Pow(2, 1.0 / 3.0), r.UpperBound); Assert.AreEqual(1.0 / 3.0, lg[0]); // y Assert.AreEqual(1.0 / 3.0 * Math.Pow(2, 1.0 / 3.0), ug[0], 1e-5); t = parser.Parse("cuberoot(z)"); paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); r = eval.Evaluate(t, intervals, paramNodes, out lg, out ug); Assert.AreEqual(0.0, r.LowerBound); Assert.AreEqual(1.0, r.UpperBound); Assert.AreEqual(double.NaN, lg[0]); // z Assert.AreEqual(1.0 / 3.0, ug[0], 1e-5); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvalutorAutoDiffLog() { var eval = new IntervalEvaluator(); var parser = new InfixExpressionParser(); var t = parser.Parse("log(4*x)"); var paramNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var intervals = new Dictionary() { { "x", new Interval(1, 2) }, }; var r = eval.Evaluate(t, intervals, paramNodes, out double[] lg, out double[] ug); Assert.AreEqual(Math.Log(4), r.LowerBound); Assert.AreEqual(Math.Log(8), r.UpperBound); Assert.AreEqual(0.25, lg[0]); // x Assert.AreEqual(0.25, ug[0]); } [TestMethod] [TestCategory("Problems.DataAnalysis")] [TestProperty("Time", "short")] public void IntervalEvaluatorAutoDiffCompareWithNumericDifferences() { // create random trees and evaluate on random data // calc gradient for all parameters // use numeric differences for approximate gradient calculation // compare gradients var grammar = new TypeCoherentExpressionGrammar(); grammar.ConfigureAsDefaultRegressionGrammar(); // activate supported symbols grammar.Symbols.First(s => s is Square).Enabled = true; grammar.Symbols.First(s => s is SquareRoot).Enabled = true; grammar.Symbols.First(s => s is Cube).Enabled = true; grammar.Symbols.First(s => s is CubeRoot).Enabled = true; grammar.Symbols.First(s => s is Sine).Enabled = true; grammar.Symbols.First(s => s is Cosine).Enabled = true; grammar.Symbols.First(s => s is Exponential).Enabled = true; grammar.Symbols.First(s => s is Logarithm).Enabled = true; grammar.Symbols.First(s => s is Absolute).Enabled = true; grammar.Symbols.First(s => s is AnalyticQuotient).Enabled = false; // not yet supported by old interval calculator grammar.Symbols.First(s => s is Constant).Enabled = false; var varSy = (Variable)grammar.Symbols.First(s => s is Variable); varSy.AllVariableNames = new string[] { "x", "y" }; varSy.VariableNames = varSy.AllVariableNames; varSy.WeightMu = 1.0; varSy.WeightSigma = 0.0; var rand = new FastRandom(1234); var intervals = new Dictionary() { { "x", new Interval(1, 2) }, { "y", new Interval(0, 1) }, }; var eval = new IntervalEvaluator(); var formatter = new InfixExpressionFormatter(); var sb = new StringBuilder(); int N = 10000; int iter = 0; while (iter < N) { var t = ProbabilisticTreeCreator.Create(rand, grammar, maxTreeLength: 5, maxTreeDepth: 5); var parameterNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); eval.Evaluate(t, intervals, parameterNodes, out double[] lowerGradient, out double[] upperGradient); ApproximateIntervalGradient(t, intervals, parameterNodes, eval, out double[] refLowerGradient, out double[] refUpperGradient); // compare autodiff and numeric diff for(int p=0;p {refLowerGradient[p]} for {parameterNodes[p]} in {formatter.Format(t)}"); } // upper if (double.IsNaN(upperGradient[p]) && double.IsNaN(refUpperGradient[p])) { } else if (upperGradient[p] == refUpperGradient[p]) { } else if (Math.Abs(upperGradient[p] - refUpperGradient[p]) <= Math.Abs(upperGradient[p]) * 1e-4) { } else { sb.AppendLine($"{upperGradient[p]} <> {refUpperGradient[p]} for {parameterNodes[p]} in {formatter.Format(t)}"); } } iter++; } if (sb.Length > 0) { Console.WriteLine(sb.ToString()); Assert.Fail("There were differences when validating AutoDiff using numeric differences"); } } #region helper private double[] CalculateGradient(string expr, IDataset ds) { var eval = new VectorAutoDiffEvaluator(); var parser = new InfixExpressionParser(); var rows = new int[1]; var fi = new double[1]; var t = parser.Parse(expr); var parameterNodes = t.IterateNodesPostfix().Where(n => n.SubtreeCount == 0).ToArray(); var jac = new double[1, parameterNodes.Length]; eval.Evaluate(t, ds, rows, parameterNodes, fi, jac); var g = new double[parameterNodes.Length]; for (int i = 0; i < g.Length; i++) g[i] = jac[0, i]; return g; } private double[,] ApproximateGradient(ISymbolicExpressionTree t, Dataset ds, int[] rows, ISymbolicExpressionTreeNode[] parameterNodes, SymbolicDataAnalysisExpressionTreeLinearInterpreter eval) { var jac = new double[rows.Length, parameterNodes.Length]; for (int p = 0; p < parameterNodes.Length; p++) { var x = GetValue(parameterNodes[p]); var x_diff = x * 1e-4; // relative change // calculate output for increased parameter value SetValue(parameterNodes[p], x + x_diff / 2); var f = eval.GetSymbolicExpressionTreeValues(t, ds, rows).ToArray(); for (int i = 0; i < rows.Length; i++) { jac[i, p] = f[i]; } // calculate output for decreased parameter value SetValue(parameterNodes[p], x - x_diff / 2); f = eval.GetSymbolicExpressionTreeValues(t, ds, rows).ToArray(); for (int i = 0; i < rows.Length; i++) { jac[i, p] -= f[i]; // calc difference (and scale for x_diff) jac[i, p] /= x_diff; } // restore original value SetValue(parameterNodes[p], x); } return jac; } private void ApproximateIntervalGradient(ISymbolicExpressionTree t, Dictionary intervals, ISymbolicExpressionTreeNode[] parameterNodes, IntervalEvaluator eval, out double[] lowerGradient, out double[] upperGradient) { lowerGradient = new double[parameterNodes.Length]; upperGradient = new double[parameterNodes.Length]; for(int p=0;p