#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.RealVectorEncoding;
using HEAL.Attic;
namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
[Item("CIGTAB", "to be aded")]
[StorableType("1D78E29D-4697-44A1-8A53-3909E3B7D57D")]
public class CIGTAB : MultiObjectiveTestFunction {
protected override double[,] GetBounds(int objectives) {
return new double[,] { { -10, 10 } };
}
protected override bool[] GetMaximization(int objecitves) {
return new bool[2];
}
protected override double[] GetReferencePoint(int objecitves) {
return new double[] { 11, 11 };
}
protected override IEnumerable GetOptimalParetoFront(int objecitves) {
List res = new List();
for (int i = 0; i <= 500; i++) {
RealVector r = new RealVector(2);
r[0] = 2 / 500.0 * i;
r[1] = 2 / 500.0 * i;
res.Add(this.Evaluate(r, 2));
}
return res;
}
protected override double GetBestKnownHypervolume(int objectives) {
return Hypervolume.Calculate(GetOptimalParetoFront(objectives), GetReferencePoint(objectives), GetMaximization(objectives));
}
[StorableConstructor]
protected CIGTAB(StorableConstructorFlag _) : base(_) { }
protected CIGTAB(CIGTAB original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new CIGTAB(this, cloner);
}
public CIGTAB() : base(minimumObjectives: 2, maximumObjectives: 2, minimumSolutionLength: 1, maximumSolutionLength: int.MaxValue) { }
public override double[] Evaluate(RealVector r, int objectives) {
if (objectives != 2) throw new ArgumentException("The CIGTAB problem must always have 2 objectives");
double x = r[0];
double a = 1000;
double sum = x * x;
for (int i = 1; i < r.Length - 1; i++) {
sum += a * r[i] * r[i];
}
sum += a * a * r[r.Length - 1] * r[r.Length - 1];
//objective1
double f0 = 1 / (a * a * r.Length) * sum;
x = x - 2;
sum = x * x;
for (int i = 1; i < r.Length - 1; i++) {
sum += a * (r[i] - 2) * (r[i] - 2);
}
sum += a * a * (r[r.Length - 1] - 2) * (r[r.Length - 1] - 2);
//objective0
double f1 = 1 / (a * a * r.Length) * sum;
return new double[] { f0, f1 };
}
}
}