#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HEAL.Attic; using System.Runtime.InteropServices; using System.Diagnostics; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { [Item("NLOpt Evaluator (with constraints)", "")] [StorableType("5FADAE55-3516-4539-8A36-BC9B0D00880D")] public class NLOptEvaluator : SymbolicRegressionSingleObjectiveEvaluator { private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations"; private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement"; private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability"; private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage"; private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree"; private const string UpdateVariableWeightsParameterName = "Update Variable Weights"; private const string FunctionEvaluationsResultParameterName = "Constants Optimization Function Evaluations"; private const string GradientEvaluationsResultParameterName = "Constants Optimization Gradient Evaluations"; private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations"; private const string AchievedQualityImprovementParameterName = "AchievedQualityImprovment"; private const string NumberOfConstraintViolationsBeforeOptimizationParameterName = "NumberOfConstraintViolationsBeforeOptimization"; private const string NumberOfConstraintViolationsAfterOptimizationParameterName = "NumberOfConstraintViolationsAfterOptimization"; private const string ConstraintsBeforeOptimizationParameterName = "ConstraintsBeforeOptimization"; private const string ViolationsAfterOptimizationParameterName = "ConstraintsAfterOptimization"; private const string OptimizationDurationParameterName = "OptimizationDuration"; public IFixedValueParameter ConstantOptimizationIterationsParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationIterationsParameterName]; } } public IFixedValueParameter ConstantOptimizationImprovementParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationImprovementParameterName]; } } public IFixedValueParameter ConstantOptimizationProbabilityParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationProbabilityParameterName]; } } public IFixedValueParameter ConstantOptimizationRowsPercentageParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationRowsPercentageParameterName]; } } public IFixedValueParameter UpdateConstantsInTreeParameter { get { return (IFixedValueParameter)Parameters[UpdateConstantsInTreeParameterName]; } } public IFixedValueParameter UpdateVariableWeightsParameter { get { return (IFixedValueParameter)Parameters[UpdateVariableWeightsParameterName]; } } public IResultParameter FunctionEvaluationsResultParameter { get { return (IResultParameter)Parameters[FunctionEvaluationsResultParameterName]; } } public IResultParameter GradientEvaluationsResultParameter { get { return (IResultParameter)Parameters[GradientEvaluationsResultParameterName]; } } public IFixedValueParameter CountEvaluationsParameter { get { return (IFixedValueParameter)Parameters[CountEvaluationsParameterName]; } } public IConstrainedValueParameter SolverParameter { get { return (IConstrainedValueParameter)Parameters["Solver"]; } } public ILookupParameter AchievedQualityImprovementParameter { get { return (ILookupParameter)Parameters[AchievedQualityImprovementParameterName]; } } public ILookupParameter NumberOfConstraintViolationsBeforeOptimizationParameter { get { return (ILookupParameter)Parameters[NumberOfConstraintViolationsBeforeOptimizationParameterName]; } } public ILookupParameter NumberOfConstraintViolationsAfterOptimizationParameter { get { return (ILookupParameter)Parameters[NumberOfConstraintViolationsAfterOptimizationParameterName]; } } public ILookupParameter ViolationsAfterOptimizationParameter { get { return (ILookupParameter)Parameters[ViolationsAfterOptimizationParameterName]; } } public ILookupParameter ViolationsBeforeOptimizationParameter { get { return (ILookupParameter)Parameters[ConstraintsBeforeOptimizationParameterName]; } } public ILookupParameter OptimizationDurationParameter { get { return (ILookupParameter)Parameters[OptimizationDurationParameterName]; } } public IntValue ConstantOptimizationIterations { get { return ConstantOptimizationIterationsParameter.Value; } } public DoubleValue ConstantOptimizationImprovement { get { return ConstantOptimizationImprovementParameter.Value; } } public PercentValue ConstantOptimizationProbability { get { return ConstantOptimizationProbabilityParameter.Value; } } public PercentValue ConstantOptimizationRowsPercentage { get { return ConstantOptimizationRowsPercentageParameter.Value; } } public bool UpdateConstantsInTree { get { return UpdateConstantsInTreeParameter.Value.Value; } set { UpdateConstantsInTreeParameter.Value.Value = value; } } public bool UpdateVariableWeights { get { return UpdateVariableWeightsParameter.Value.Value; } set { UpdateVariableWeightsParameter.Value.Value = value; } } public bool CountEvaluations { get { return CountEvaluationsParameter.Value.Value; } set { CountEvaluationsParameter.Value.Value = value; } } public string Solver { get { return SolverParameter.Value.Value; } } public override bool Maximization { get { return false; } } [StorableConstructor] protected NLOptEvaluator(StorableConstructorFlag _) : base(_) { } protected NLOptEvaluator(NLOptEvaluator original, Cloner cloner) : base(original, cloner) { } public NLOptEvaluator() : base() { Parameters.Add(new FixedValueParameter(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10))); Parameters.Add(new FixedValueParameter(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0)) { Hidden = true }); Parameters.Add(new FixedValueParameter(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1))); Parameters.Add(new FixedValueParameter(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1))); Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true }); Parameters.Add(new FixedValueParameter(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) { Hidden = true }); Parameters.Add(new FixedValueParameter(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false))); var validSolvers = new ItemSet(new[] { "MMA", "COBYLA", "CCSAQ", "ISRES" }.Select(s => new StringValue(s).AsReadOnly())); Parameters.Add(new ConstrainedValueParameter("Solver", "The solver algorithm", validSolvers, validSolvers.First())); Parameters.Add(new ResultParameter(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue())); Parameters.Add(new ResultParameter(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue())); Parameters.Add(new LookupParameter(AchievedQualityImprovementParameterName)); Parameters.Add(new LookupParameter(NumberOfConstraintViolationsBeforeOptimizationParameterName)); Parameters.Add(new LookupParameter(NumberOfConstraintViolationsAfterOptimizationParameterName)); Parameters.Add(new LookupParameter(ConstraintsBeforeOptimizationParameterName)); Parameters.Add(new LookupParameter(ViolationsAfterOptimizationParameterName)); Parameters.Add(new LookupParameter(OptimizationDurationParameterName)); } public override IDeepCloneable Clone(Cloner cloner) { return new NLOptEvaluator(this, cloner); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(AchievedQualityImprovementParameterName)) { Parameters.Add(new LookupParameter(AchievedQualityImprovementParameterName)); Parameters.Add(new LookupParameter(NumberOfConstraintViolationsBeforeOptimizationParameterName)); Parameters.Add(new LookupParameter(NumberOfConstraintViolationsAfterOptimizationParameterName)); } if(!Parameters.ContainsKey(ConstraintsBeforeOptimizationParameterName)) { Parameters.Add(new LookupParameter(ConstraintsBeforeOptimizationParameterName)); Parameters.Add(new LookupParameter(ViolationsAfterOptimizationParameterName)); Parameters.Add(new LookupParameter(OptimizationDurationParameterName)); } } private static readonly object locker = new object(); public override IOperation InstrumentedApply() { var solution = SymbolicExpressionTreeParameter.ActualValue; double quality; if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) { IEnumerable constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value); var counter = new EvaluationsCounter(); if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) { throw new NotSupportedException(); } var sw = new Stopwatch(); sw.Start(); quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue, constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, Solver, out double qDiff, out double[] constraintsBefore, out double[] constraintsAfter, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree, counter: counter); AchievedQualityImprovementParameter.ActualValue = new DoubleValue(qDiff); NumberOfConstraintViolationsBeforeOptimizationParameter.ActualValue = new DoubleValue(constraintsBefore.Count(cv => cv > 0)); NumberOfConstraintViolationsAfterOptimizationParameter.ActualValue = new DoubleValue(constraintsAfter.Count(cv => cv > 0)); ViolationsBeforeOptimizationParameter.ActualValue = new DoubleArray(constraintsBefore); ViolationsAfterOptimizationParameter.ActualValue = new DoubleArray(constraintsAfter); OptimizationDurationParameter.ActualValue = new DoubleValue(sw.Elapsed.TotalSeconds); if (CountEvaluations) { lock (locker) { FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations; GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations; } } } else { throw new NotSupportedException(); } QualityParameter.ActualValue = new DoubleValue(quality); return base.InstrumentedApply(); } public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows) { SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context; EstimationLimitsParameter.ExecutionContext = context; ApplyLinearScalingParameter.ExecutionContext = context; FunctionEvaluationsResultParameter.ExecutionContext = context; GradientEvaluationsResultParameter.ExecutionContext = context; // MSE evaluator is used on purpose instead of the const-opt evaluator, // because Evaluate() is used to get the quality of evolved models on // different partitions of the dataset (e.g., best validation model) double mse = SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, double.MinValue, double.MaxValue, problemData, rows, applyLinearScaling: false); SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null; EstimationLimitsParameter.ExecutionContext = null; ApplyLinearScalingParameter.ExecutionContext = null; FunctionEvaluationsResultParameter.ExecutionContext = null; GradientEvaluationsResultParameter.ExecutionContext = null; return mse; } public class EvaluationsCounter { public int FunctionEvaluations = 0; public int GradientEvaluations = 0; } public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows, bool applyLinearScaling, string solver, out double qDiff, out double[] constraintsBefore, out double[] constraintsAfter, int maxIterations, bool updateVariableWeights = true, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue, bool updateConstantsInTree = true, Action iterationCallback = null, EvaluationsCounter counter = null ) { if (!updateVariableWeights) throw new NotSupportedException("not updating variable weights is not supported"); if (!updateConstantsInTree) throw new NotSupportedException("not updating tree parameters is not supported"); if (!applyLinearScaling) throw new NotSupportedException("application without linear scaling is not supported"); using (var state = new ConstrainedNLSInternal(solver, tree, maxIterations, problemData, 0, 0, 0)) { constraintsBefore = state.BestConstraintValues; double qBefore = state.BestError; state.Optimize(ConstrainedNLSInternal.OptimizationMode.UpdateParameters); constraintsAfter = state.BestConstraintValues; var qOpt = state.BestError; if (constraintsAfter.Any(cv => cv > 1e-8)) qOpt = qBefore; qDiff = qOpt - qBefore; return qOpt; } } } }