[17196] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HEAL.Attic;
|
---|
| 32 | using System.Runtime.InteropServices;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 35 | [Item("NLOpt Evaluator (with constraints)", "")]
|
---|
| 36 | [StorableType("5FADAE55-3516-4539-8A36-BC9B0D00880D")]
|
---|
| 37 | public class NLOptEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
| 38 | private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
|
---|
| 39 | private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
|
---|
| 40 | private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
|
---|
| 41 | private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
|
---|
| 42 | private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
|
---|
| 43 | private const string UpdateVariableWeightsParameterName = "Update Variable Weights";
|
---|
| 44 |
|
---|
| 45 | private const string FunctionEvaluationsResultParameterName = "Constants Optimization Function Evaluations";
|
---|
| 46 | private const string GradientEvaluationsResultParameterName = "Constants Optimization Gradient Evaluations";
|
---|
| 47 | private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations";
|
---|
| 48 |
|
---|
| 49 | public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
|
---|
| 50 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
|
---|
| 51 | }
|
---|
| 52 | public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
|
---|
| 53 | get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
|
---|
| 54 | }
|
---|
| 55 | public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
|
---|
| 56 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
|
---|
| 57 | }
|
---|
| 58 | public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
|
---|
| 59 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
|
---|
| 60 | }
|
---|
| 61 | public IFixedValueParameter<BoolValue> UpdateConstantsInTreeParameter {
|
---|
| 62 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateConstantsInTreeParameterName]; }
|
---|
| 63 | }
|
---|
| 64 | public IFixedValueParameter<BoolValue> UpdateVariableWeightsParameter {
|
---|
| 65 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateVariableWeightsParameterName]; }
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public IResultParameter<IntValue> FunctionEvaluationsResultParameter {
|
---|
| 69 | get { return (IResultParameter<IntValue>)Parameters[FunctionEvaluationsResultParameterName]; }
|
---|
| 70 | }
|
---|
| 71 | public IResultParameter<IntValue> GradientEvaluationsResultParameter {
|
---|
| 72 | get { return (IResultParameter<IntValue>)Parameters[GradientEvaluationsResultParameterName]; }
|
---|
| 73 | }
|
---|
| 74 | public IFixedValueParameter<BoolValue> CountEvaluationsParameter {
|
---|
| 75 | get { return (IFixedValueParameter<BoolValue>)Parameters[CountEvaluationsParameterName]; }
|
---|
| 76 | }
|
---|
| 77 | public IConstrainedValueParameter<StringValue> SolverParameter {
|
---|
| 78 | get { return (IConstrainedValueParameter<StringValue>)Parameters["Solver"]; }
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 |
|
---|
| 82 | public IntValue ConstantOptimizationIterations {
|
---|
| 83 | get { return ConstantOptimizationIterationsParameter.Value; }
|
---|
| 84 | }
|
---|
| 85 | public DoubleValue ConstantOptimizationImprovement {
|
---|
| 86 | get { return ConstantOptimizationImprovementParameter.Value; }
|
---|
| 87 | }
|
---|
| 88 | public PercentValue ConstantOptimizationProbability {
|
---|
| 89 | get { return ConstantOptimizationProbabilityParameter.Value; }
|
---|
| 90 | }
|
---|
| 91 | public PercentValue ConstantOptimizationRowsPercentage {
|
---|
| 92 | get { return ConstantOptimizationRowsPercentageParameter.Value; }
|
---|
| 93 | }
|
---|
| 94 | public bool UpdateConstantsInTree {
|
---|
| 95 | get { return UpdateConstantsInTreeParameter.Value.Value; }
|
---|
| 96 | set { UpdateConstantsInTreeParameter.Value.Value = value; }
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | public bool UpdateVariableWeights {
|
---|
| 100 | get { return UpdateVariableWeightsParameter.Value.Value; }
|
---|
| 101 | set { UpdateVariableWeightsParameter.Value.Value = value; }
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | public bool CountEvaluations {
|
---|
| 105 | get { return CountEvaluationsParameter.Value.Value; }
|
---|
| 106 | set { CountEvaluationsParameter.Value.Value = value; }
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | public string Solver {
|
---|
| 110 | get { return SolverParameter.Value.Value; }
|
---|
| 111 | }
|
---|
| 112 | public override bool Maximization {
|
---|
| 113 | get { return false; }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | [StorableConstructor]
|
---|
| 117 | protected NLOptEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
| 118 | protected NLOptEvaluator(NLOptEvaluator original, Cloner cloner)
|
---|
| 119 | : base(original, cloner) {
|
---|
| 120 | }
|
---|
| 121 | public NLOptEvaluator()
|
---|
| 122 | : base() {
|
---|
| 123 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10)));
|
---|
| 124 | Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0)) { Hidden = true });
|
---|
| 125 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1)));
|
---|
| 126 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1)));
|
---|
| 127 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true });
|
---|
| 128 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) { Hidden = true });
|
---|
| 129 |
|
---|
| 130 | Parameters.Add(new FixedValueParameter<BoolValue>(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false)));
|
---|
| 131 |
|
---|
| 132 | var validSolvers = new ItemSet<StringValue>(new[] { "MMA", "COBYLA", "CCSAQ", "ISRES" }.Select(s => new StringValue(s).AsReadOnly()));
|
---|
| 133 | Parameters.Add(new ConstrainedValueParameter<StringValue>("Solver", "The solver algorithm", validSolvers, validSolvers.First()));
|
---|
| 134 | Parameters.Add(new ResultParameter<IntValue>(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
|
---|
| 135 | Parameters.Add(new ResultParameter<IntValue>(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 139 | return new NLOptEvaluator(this, cloner);
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 143 | private void AfterDeserialization() { }
|
---|
| 144 |
|
---|
| 145 | private static readonly object locker = new object();
|
---|
| 146 |
|
---|
| 147 | public override IOperation InstrumentedApply() {
|
---|
| 148 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 149 | double quality;
|
---|
| 150 | if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
|
---|
| 151 | IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
|
---|
| 152 | var counter = new EvaluationsCounter();
|
---|
| 153 | quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
|
---|
| 154 | constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, Solver, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree, counter: counter);
|
---|
| 155 |
|
---|
| 156 | if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
|
---|
| 157 | throw new NotSupportedException();
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | if (CountEvaluations) {
|
---|
| 161 | lock (locker) {
|
---|
| 162 | FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations;
|
---|
| 163 | GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations;
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | } else {
|
---|
| 168 | throw new NotSupportedException();
|
---|
| 169 | }
|
---|
| 170 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 171 |
|
---|
| 172 | return base.InstrumentedApply();
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
| 176 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 177 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
| 178 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
| 179 | FunctionEvaluationsResultParameter.ExecutionContext = context;
|
---|
| 180 | GradientEvaluationsResultParameter.ExecutionContext = context;
|
---|
| 181 |
|
---|
| 182 | // MSE evaluator is used on purpose instead of the const-opt evaluator,
|
---|
| 183 | // because Evaluate() is used to get the quality of evolved models on
|
---|
| 184 | // different partitions of the dataset (e.g., best validation model)
|
---|
| 185 | double mse = SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, double.MinValue, double.MaxValue, problemData, rows, applyLinearScaling: false);
|
---|
| 186 |
|
---|
| 187 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 188 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
| 189 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
| 190 | FunctionEvaluationsResultParameter.ExecutionContext = null;
|
---|
| 191 | GradientEvaluationsResultParameter.ExecutionContext = null;
|
---|
| 192 |
|
---|
| 193 | return mse;
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | public class EvaluationsCounter {
|
---|
| 197 | public int FunctionEvaluations = 0;
|
---|
| 198 | public int GradientEvaluations = 0;
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | private static void GetParameterNodes(ISymbolicExpressionTree tree, out List<ISymbolicExpressionTreeNode> thetaNodes, out List<double> thetaValues) {
|
---|
| 202 | thetaNodes = new List<ISymbolicExpressionTreeNode>();
|
---|
| 203 | thetaValues = new List<double>();
|
---|
| 204 |
|
---|
| 205 | var nodes = tree.IterateNodesPrefix().ToArray();
|
---|
| 206 | for (int i = 0; i < nodes.Length; ++i) {
|
---|
| 207 | var node = nodes[i];
|
---|
| 208 | if (node is VariableTreeNode variableTreeNode) {
|
---|
| 209 | thetaValues.Add(variableTreeNode.Weight);
|
---|
| 210 | thetaNodes.Add(node);
|
---|
| 211 | } else if (node is ConstantTreeNode constantTreeNode) {
|
---|
| 212 | thetaNodes.Add(node);
|
---|
| 213 | thetaValues.Add(constantTreeNode.Value);
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 |
|
---|
| 219 | public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
| 220 | ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
|
---|
| 221 | string solver,
|
---|
| 222 | int maxIterations, bool updateVariableWeights = true,
|
---|
| 223 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
|
---|
| 224 | bool updateConstantsInTree = true, Action<double[], double, object> iterationCallback = null, EvaluationsCounter counter = null) {
|
---|
| 225 |
|
---|
| 226 | if (!updateVariableWeights) throw new NotSupportedException("not updating variable weights is not supported");
|
---|
| 227 | if (!updateConstantsInTree) throw new NotSupportedException("not updating tree parameters is not supported");
|
---|
| 228 | if (!applyLinearScaling) throw new NotSupportedException("application without linear scaling is not supported");
|
---|
| 229 |
|
---|
| 230 |
|
---|
[17215] | 231 | using (var state = new ConstrainedNLSInternal(solver, tree, maxIterations, problemData, 0, 0, 0)) {
|
---|
| 232 | state.Optimize();
|
---|
| 233 | return state.BestError;
|
---|
[17196] | 234 | }
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 |
|
---|
| 238 | }
|
---|
| 239 | }
|
---|