#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HEAL.Attic;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Random;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Nonlinear regression data analysis algorithm.
///
[Item("Nonlinear Regression with Constraints (NLR)", "Nonlinear regression (curve fitting) data analysis algorithm that supports interval constraints.")]
[Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
[StorableType("B235DB6E-591F-4537-8D2F-C2D1232AAEFD")]
public sealed class NonlinearConstrainedRegression : FixedDataAnalysisAlgorithm {
private const string RegressionSolutionResultName = "Regression solution";
private const string ModelStructureParameterName = "Model structure";
private const string IterationsParameterName = "Iterations";
private const string RestartsParameterName = "Restarts";
private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
private const string SeedParameterName = "Seed";
private const string InitParamsRandomlyParameterName = "InitializeParametersRandomly";
private const string ApplyLinearScalingParameterName = "Apply linear scaling";
public IFixedValueParameter ModelStructureParameter {
get { return (IFixedValueParameter)Parameters[ModelStructureParameterName]; }
}
public IFixedValueParameter IterationsParameter {
get { return (IFixedValueParameter)Parameters[IterationsParameterName]; }
}
public IFixedValueParameter SetSeedRandomlyParameter {
get { return (IFixedValueParameter)Parameters[SetSeedRandomlyParameterName]; }
}
public IFixedValueParameter SeedParameter {
get { return (IFixedValueParameter)Parameters[SeedParameterName]; }
}
public IFixedValueParameter RestartsParameter {
get { return (IFixedValueParameter)Parameters[RestartsParameterName]; }
}
public IFixedValueParameter InitParametersRandomlyParameter {
get { return (IFixedValueParameter)Parameters[InitParamsRandomlyParameterName]; }
}
public IFixedValueParameter ApplyLinearScalingParameter {
get { return (IFixedValueParameter)Parameters[ApplyLinearScalingParameterName]; }
}
public string ModelStructure {
get { return ModelStructureParameter.Value.Value; }
set { ModelStructureParameter.Value.Value = value; }
}
public int Iterations {
get { return IterationsParameter.Value.Value; }
set { IterationsParameter.Value.Value = value; }
}
public int Restarts {
get { return RestartsParameter.Value.Value; }
set { RestartsParameter.Value.Value = value; }
}
public int Seed {
get { return SeedParameter.Value.Value; }
set { SeedParameter.Value.Value = value; }
}
public bool SetSeedRandomly {
get { return SetSeedRandomlyParameter.Value.Value; }
set { SetSeedRandomlyParameter.Value.Value = value; }
}
public bool InitializeParametersRandomly {
get { return InitParametersRandomlyParameter.Value.Value; }
set { InitParametersRandomlyParameter.Value.Value = value; }
}
public bool ApplyLinearScaling {
get { return ApplyLinearScalingParameter.Value.Value; }
set { ApplyLinearScalingParameter.Value.Value = value; }
}
[StorableConstructor]
private NonlinearConstrainedRegression(StorableConstructorFlag _) : base(_) { }
private NonlinearConstrainedRegression(NonlinearConstrainedRegression original, Cloner cloner)
: base(original, cloner) {
}
public NonlinearConstrainedRegression()
: base() {
Problem = new RegressionProblem();
Parameters.Add(new FixedValueParameter(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringValue("1.0 * x*x + 0.0")));
Parameters.Add(new FixedValueParameter(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
Parameters.Add(new FixedValueParameter(RestartsParameterName, "The number of independent random restarts (>0)", new IntValue(10)));
Parameters.Add(new FixedValueParameter(SeedParameterName, "The PRNG seed value.", new IntValue()));
Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
Parameters.Add(new FixedValueParameter(InitParamsRandomlyParameterName, "Switch to determine if the real-valued model parameters should be initialized randomly in each restart.", new BoolValue(false)));
Parameters.Add(new FixedValueParameter(ApplyLinearScalingParameterName, "Switch to determine if linear scaling terms should be added to the model", new BoolValue(true)));
SetParameterHiddenState();
InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
SetParameterHiddenState();
};
}
private void SetParameterHiddenState() {
var hide = !InitializeParametersRandomly;
RestartsParameter.Hidden = hide;
SeedParameter.Hidden = hide;
SetSeedRandomlyParameter.Hidden = hide;
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
SetParameterHiddenState();
InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
SetParameterHiddenState();
};
}
public override IDeepCloneable Clone(Cloner cloner) {
return new NonlinearConstrainedRegression(this, cloner);
}
#region nonlinear regression
protected override void Run(CancellationToken cancellationToken) {
IRegressionSolution bestSolution = null;
if (InitializeParametersRandomly) {
var qualityTable = new DataTable("RMSE table");
qualityTable.VisualProperties.YAxisLogScale = true;
var trainRMSERow = new DataRow("RMSE (train)");
trainRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
var testRMSERow = new DataRow("RMSE test");
testRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
qualityTable.Rows.Add(trainRMSERow);
qualityTable.Rows.Add(testRMSERow);
Results.Add(new Result(qualityTable.Name, qualityTable.Name + " for all restarts", qualityTable));
if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
var rand = new MersenneTwister((uint)Seed);
bestSolution = CreateRegressionSolution((RegressionProblemData)Problem.ProblemData, ModelStructure, Iterations, ApplyLinearScaling, rand);
trainRMSERow.Values.Add(bestSolution.TrainingRootMeanSquaredError);
testRMSERow.Values.Add(bestSolution.TestRootMeanSquaredError);
for (int r = 0; r < Restarts; r++) {
var solution = CreateRegressionSolution((RegressionProblemData)Problem.ProblemData, ModelStructure, Iterations, ApplyLinearScaling, rand);
trainRMSERow.Values.Add(solution.TrainingRootMeanSquaredError);
testRMSERow.Values.Add(solution.TestRootMeanSquaredError);
if (solution.TrainingRootMeanSquaredError < bestSolution.TrainingRootMeanSquaredError) {
bestSolution = solution;
}
}
} else {
bestSolution = CreateRegressionSolution((RegressionProblemData)Problem.ProblemData, ModelStructure, Iterations, ApplyLinearScaling);
}
Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", bestSolution));
Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(bestSolution.TrainingRootMeanSquaredError)));
Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(bestSolution.TestRootMeanSquaredError)));
}
///
/// Fits a model to the data by optimizing the numeric constants.
/// Model is specified as infix expression containing variable names and numbers.
/// The starting point for the numeric constants is initialized randomly if a random number generator is specified (~N(0,1)). Otherwise the user specified constants are
/// used as a starting point.
/// -
/// Training and test data
/// The function as infix expression
/// Number of constant optimization iterations (using Levenberg-Marquardt algorithm)
/// Optional random number generator for random initialization of numeric constants.
///
public static ISymbolicRegressionSolution CreateRegressionSolution(RegressionProblemData problemData, string modelStructure, int maxIterations, bool applyLinearScaling, IRandom rand = null) {
var parser = new InfixExpressionParser();
var tree = parser.Parse(modelStructure);
// parser handles double and string variables equally by creating a VariableTreeNode
// post-process to replace VariableTreeNodes by FactorVariableTreeNodes for all string variables
var factorSymbol = new FactorVariable();
factorSymbol.VariableNames =
problemData.AllowedInputVariables.Where(name => problemData.Dataset.VariableHasType(name));
factorSymbol.AllVariableNames = factorSymbol.VariableNames;
factorSymbol.VariableValues =
factorSymbol.VariableNames.Select(name =>
new KeyValuePair>(name,
problemData.Dataset.GetReadOnlyStringValues(name).Distinct()
.Select((n, i) => Tuple.Create(n, i))
.ToDictionary(tup => tup.Item1, tup => tup.Item2)));
foreach (var parent in tree.IterateNodesPrefix().ToArray()) {
for (int i = 0; i < parent.SubtreeCount; i++) {
var varChild = parent.GetSubtree(i) as VariableTreeNode;
var factorVarChild = parent.GetSubtree(i) as FactorVariableTreeNode;
if (varChild != null && factorSymbol.VariableNames.Contains(varChild.VariableName)) {
parent.RemoveSubtree(i);
var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
factorTreeNode.VariableName = varChild.VariableName;
factorTreeNode.Weights =
factorTreeNode.Symbol.GetVariableValues(factorTreeNode.VariableName).Select(_ => 1.0).ToArray();
// weight = 1.0 for each value
parent.InsertSubtree(i, factorTreeNode);
} else if (factorVarChild != null && factorSymbol.VariableNames.Contains(factorVarChild.VariableName)) {
if (factorSymbol.GetVariableValues(factorVarChild.VariableName).Count() != factorVarChild.Weights.Length)
throw new ArgumentException(
string.Format("Factor variable {0} needs exactly {1} weights",
factorVarChild.VariableName,
factorSymbol.GetVariableValues(factorVarChild.VariableName).Count()));
parent.RemoveSubtree(i);
var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
factorTreeNode.VariableName = factorVarChild.VariableName;
factorTreeNode.Weights = factorVarChild.Weights;
parent.InsertSubtree(i, factorTreeNode);
}
}
}
// var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
//
// SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices,
// applyLinearScaling: applyLinearScaling, maxIterations: maxIterations,
// updateVariableWeights: false, updateConstantsInTree: true);
var intervals = problemData.IntervalConstraints;
var constraintsParser = new IntervalConstraintsParser();
var constraints = constraintsParser.Parse(intervals.Value);
var dataIntervals = problemData.VariableRanges.VariableIntervals;
// convert constants to variables named theta...
var treeForDerivation = ReplaceConstWithVar(tree, out List thetaNames, out List thetaValues);
// create trees for relevant derivatives
Dictionary derivatives = new Dictionary();
var allThetaNodes = thetaNames.Select(_ => new List()).ToArray();
var constraintTrees = new List();
foreach (var constraint in constraints) {
if (constraint.IsDerivation) {
var df = DerivativeCalculator.Derive(treeForDerivation, constraint.Variable);
// alglib requires constraint expressions of the form c(x) <= 0
// -> we make two expressions, one for the lower bound and one for the upper bound
if (constraint.Interval.UpperBound < double.PositiveInfinity) {
var df_smaller_upper = Subtract((ISymbolicExpressionTree)df.Clone(), CreateConstant(constraint.Interval.UpperBound));
// convert variables named theta back to constants
var df_prepared = ReplaceVarWithConst(df_smaller_upper, thetaNames, thetaValues, allThetaNodes);
constraintTrees.Add(df_prepared);
}
if (constraint.Interval.LowerBound > double.NegativeInfinity) {
var df_larger_lower = Subtract(CreateConstant(constraint.Interval.LowerBound), (ISymbolicExpressionTree)df.Clone());
// convert variables named theta back to constants
var df_prepared = ReplaceVarWithConst(df_larger_lower, thetaNames, thetaValues, allThetaNodes);
constraintTrees.Add(df_prepared);
}
} else {
if (constraint.Interval.UpperBound < double.PositiveInfinity) {
var f_smaller_upper = Subtract((ISymbolicExpressionTree)treeForDerivation.Clone(), CreateConstant(constraint.Interval.UpperBound));
// convert variables named theta back to constants
var df_prepared = ReplaceVarWithConst(f_smaller_upper, thetaNames, thetaValues, allThetaNodes);
constraintTrees.Add(df_prepared);
}
if (constraint.Interval.LowerBound > double.NegativeInfinity) {
var f_larger_lower = Subtract(CreateConstant(constraint.Interval.LowerBound), (ISymbolicExpressionTree)treeForDerivation.Clone());
// convert variables named theta back to constants
var df_prepared = ReplaceVarWithConst(f_larger_lower, thetaNames, thetaValues, allThetaNodes);
constraintTrees.Add(df_prepared);
}
}
}
var preparedTree = ReplaceVarWithConst(treeForDerivation, thetaNames, thetaValues, allThetaNodes);
// initialize constants randomly
if (rand != null) {
for (int i = 0; i < allThetaNodes.Length; i++) {
double f = Math.Exp(NormalDistributedRandom.NextDouble(rand, 0, 1));
double scale = rand.NextDouble() < 0.5 ? -1 : 1;
thetaValues[i] = scale * thetaValues[i] * f;
foreach (var constNode in allThetaNodes[i]) constNode.Value = thetaValues[i];
}
}
void UpdateThetaValues(double[] theta) {
for (int i = 0; i < theta.Length; ++i) {
foreach (var constNode in allThetaNodes[i]) constNode.Value = theta[i];
}
}
// define the callback used by the alglib optimizer
// the x argument for this callback represents our theta
void calculate_jacobian(double[] x, double[] fi, double[,] jac, object obj) {
UpdateThetaValues(x);
var autoDiffEval = new VectorAutoDiffEvaluator();
autoDiffEval.Evaluate(preparedTree, problemData.Dataset, problemData.TrainingIndices.ToArray(),
GetParameterNodes(preparedTree, allThetaNodes), out double[] fi_eval, out double[,] jac_eval);
var target = problemData.TargetVariableTrainingValues.ToArray();
// calc sum of squared errors and gradient
var sse = 0.0;
var g = new double[x.Length];
for (int i = 0; i < target.Length; i++) {
var res = target[i] - fi_eval[i];
sse += res * res;
for (int j = 0; j < g.Length; j++) {
g[j] += -2.0 * res * jac_eval[i, j];
}
}
fi[0] = sse;
for (int j = 0; j < x.Length; j++) { jac[0, j] = g[j]; }
var intervalEvaluator = new IntervalEvaluator();
for (int i = 0; i < constraintTrees.Count; i++) {
var interval = intervalEvaluator.Evaluate(constraintTrees[i], dataIntervals, GetParameterNodes(constraintTrees[i], allThetaNodes),
out double[] lowerGradient, out double[] upperGradient);
// we transformed this to a constraint c(x) <= 0, so only the upper bound is relevant for us
fi[i + 1] = interval.UpperBound;
for (int j = 0; j < x.Length; j++) {
jac[i + 1, j] = upperGradient[j];
}
}
}
// prepare alglib
alglib.minnlcstate state;
alglib.minnlcreport rep;
var x0 = thetaValues.ToArray();
alglib.minnlccreate(x0.Length, x0, out state);
double epsx = 1e-6;
int maxits = 0;
alglib.minnlcsetalgoslp(state);
alglib.minnlcsetcond(state, 0, maxits);
var s = Enumerable.Repeat(1d, x0.Length).ToArray(); // scale is set to unit scale
alglib.minnlcsetscale(state, s);
// set boundary constraints
// var boundaryLower = Enumerable.Repeat(-10d, n).ToArray();
// var boundaryUpper = Enumerable.Repeat(10d, n).ToArray();
// alglib.minnlcsetbc(state, boundaryLower, boundaryUpper);
// set non-linear constraints: 0 equality constraints, 1 inequality constraint
alglib.minnlcsetnlc(state, 0, constraintTrees.Count);
alglib.minnlcoptimize(state, calculate_jacobian, null, null);
alglib.minnlcresults(state, out double[] xOpt, out rep);
var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
UpdateThetaValues(xOpt);
var model = new SymbolicRegressionModel(problemData.TargetVariable, (ISymbolicExpressionTree)preparedTree.Clone(), (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone());
if (applyLinearScaling)
model.Scale(problemData);
SymbolicRegressionSolution solution = new SymbolicRegressionSolution(model, (IRegressionProblemData)problemData.Clone());
solution.Model.Name = "Regression Model";
solution.Name = "Regression Solution";
return solution;
}
private static ISymbolicExpressionTreeNode[] GetParameterNodes(ISymbolicExpressionTree tree, List[] allNodes) {
// TODO better solution necessary
var treeConstNodes = tree.IterateNodesPostfix().OfType().ToArray();
var paramNodes = new ISymbolicExpressionTreeNode[allNodes.Length];
for (int i = 0; i < paramNodes.Length; i++) {
paramNodes[i] = allNodes[i].SingleOrDefault(n => treeConstNodes.Contains(n));
}
return paramNodes;
}
#endregion
#region helper
private static ISymbolicExpressionTree ReplaceVarWithConst(ISymbolicExpressionTree tree, List thetaNames, List thetaValues, List[] thetaNodes) {
var copy = (ISymbolicExpressionTree)tree.Clone();
var nodes = copy.IterateNodesPostfix().ToList();
for (int i = 0; i < nodes.Count; i++) {
var n = nodes[i] as VariableTreeNode;
if (n != null) {
var thetaIdx = thetaNames.IndexOf(n.VariableName);
if (thetaIdx >= 0) {
var parent = n.Parent;
if(thetaNodes[thetaIdx].Any()) {
// HACKY: REUSE CONSTANT TREE NODE IN SEVERAL TREES
// we use this trick to allow autodiff over thetas when thetas occurr multiple times in the tree (e.g. in derived trees)
var constNode = thetaNodes[thetaIdx].First();
var childIdx = parent.IndexOfSubtree(n);
parent.RemoveSubtree(childIdx);
parent.InsertSubtree(childIdx, constNode);
} else {
var constNode = (ConstantTreeNode)CreateConstant(thetaValues[thetaIdx]);
var childIdx = parent.IndexOfSubtree(n);
parent.RemoveSubtree(childIdx);
parent.InsertSubtree(childIdx, constNode);
thetaNodes[thetaIdx].Add(constNode);
}
}
}
}
return copy;
}
private static ISymbolicExpressionTree ReplaceConstWithVar(ISymbolicExpressionTree tree, out List thetaNames, out List thetaValues) {
thetaNames = new List();
thetaValues = new List();
var copy = (ISymbolicExpressionTree)tree.Clone();
var nodes = copy.IterateNodesPostfix().ToList();
int n = 1;
for (int i = 0; i < nodes.Count; ++i) {
var node = nodes[i];
/*if (node is VariableTreeNode variableTreeNode) {
var thetaVar = (VariableTreeNode)new Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
thetaVar.Weight = 1;
thetaVar.VariableName = $"θ{n++}";
thetaNames.Add(thetaVar.VariableName);
thetaValues.Add(variableTreeNode.Weight);
variableTreeNode.Weight = 1; // set to unit weight
var parent = variableTreeNode.Parent;
var prod = MakeNode(thetaVar, variableTreeNode);
if (parent != null) {
var index = parent.IndexOfSubtree(variableTreeNode);
parent.RemoveSubtree(index);
parent.InsertSubtree(index, prod);
}
} else*/ if (node is ConstantTreeNode constantTreeNode) {
var thetaVar = (VariableTreeNode)new Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
thetaVar.Weight = 1;
thetaVar.VariableName = $"θ{n++}";
thetaNames.Add(thetaVar.VariableName);
thetaValues.Add(constantTreeNode.Value);
var parent = constantTreeNode.Parent;
if (parent != null) {
var index = constantTreeNode.Parent.IndexOfSubtree(constantTreeNode);
parent.RemoveSubtree(index);
parent.InsertSubtree(index, thetaVar);
}
}
}
return copy;
}
private static ISymbolicExpressionTreeNode CreateConstant(double value) {
var constantNode = (ConstantTreeNode)new Constant().CreateTreeNode();
constantNode.Value = value;
return constantNode;
}
private static ISymbolicExpressionTree Subtract(ISymbolicExpressionTree t, ISymbolicExpressionTreeNode b) {
var sub = MakeNode(t.Root.GetSubtree(0).GetSubtree(0), b);
t.Root.GetSubtree(0).RemoveSubtree(0);
t.Root.GetSubtree(0).InsertSubtree(0, sub);
return t;
}
private static ISymbolicExpressionTree Subtract(ISymbolicExpressionTreeNode b, ISymbolicExpressionTree t) {
var sub = MakeNode(b, t.Root.GetSubtree(0).GetSubtree(0));
t.Root.GetSubtree(0).RemoveSubtree(0);
t.Root.GetSubtree(0).InsertSubtree(0, sub);
return t;
}
private static ISymbolicExpressionTreeNode MakeNode(params ISymbolicExpressionTreeNode[] fs) where T : ISymbol, new() {
var node = new T().CreateTreeNode();
foreach (var f in fs) node.AddSubtree(f);
return node;
}
#endregion
}
}