1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HEAL.Attic;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
36 | /// <summary>
|
---|
37 | /// Linear regression data analysis algorithm.
|
---|
38 | /// </summary>
|
---|
39 | [Item("Linear Regression (LR)", "Linear regression data analysis algorithm (wrapper for ALGLIB).")]
|
---|
40 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 100)]
|
---|
41 | [StorableType("CF99D45E-F341-445E-9B9E-0587A8D9CBA7")]
|
---|
42 | public sealed class LinearRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
43 | private const string SolutionResultName = "Linear regression solution";
|
---|
44 | private const string ConfidenceSolutionResultName = "Solution with prediction intervals";
|
---|
45 |
|
---|
46 | [StorableConstructor]
|
---|
47 | private LinearRegression(StorableConstructorFlag _) : base(_) { }
|
---|
48 | private LinearRegression(LinearRegression original, Cloner cloner)
|
---|
49 | : base(original, cloner) {
|
---|
50 | }
|
---|
51 | public LinearRegression()
|
---|
52 | : base() {
|
---|
53 | Problem = new RegressionProblem();
|
---|
54 | }
|
---|
55 | [StorableHook(HookType.AfterDeserialization)]
|
---|
56 | private void AfterDeserialization() { }
|
---|
57 |
|
---|
58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
59 | return new LinearRegression(this, cloner);
|
---|
60 | }
|
---|
61 |
|
---|
62 | #region linear regression
|
---|
63 | protected override void Run(CancellationToken cancellationToken) {
|
---|
64 | double rmsError, cvRmsError;
|
---|
65 | // produce both solutions, to allow symbolic manipulation of LR solutions as well
|
---|
66 | // as the calculation of prediction intervals.
|
---|
67 | // There is no clean way to implement the new model class for LR as a symbolic model.
|
---|
68 | var solution = CreateSolution(Problem.ProblemData, out rmsError, out cvRmsError);
|
---|
69 | #pragma warning disable 168, 3021
|
---|
70 | var symbolicSolution = CreateLinearRegressionSolution(Problem.ProblemData, out rmsError, out cvRmsError);
|
---|
71 | #pragma warning restore 168, 3021
|
---|
72 | Results.Add(new Result(SolutionResultName, "The linear regression solution.", symbolicSolution));
|
---|
73 | Results.Add(new Result(ConfidenceSolutionResultName, "Linear regression solution with parameter covariance matrix " +
|
---|
74 | "and calculation of prediction intervals", solution));
|
---|
75 | Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the linear regression solution on the training set.", new DoubleValue(rmsError)));
|
---|
76 | Results.Add(new Result("Estimated root mean square error (cross-validation)", "The estimated root of the mean of squared errors of the linear regression solution via cross validation.", new DoubleValue(cvRmsError)));
|
---|
77 | }
|
---|
78 |
|
---|
79 | [Obsolete("Use CreateSolution() instead")]
|
---|
80 | public static ISymbolicRegressionSolution CreateLinearRegressionSolution(IRegressionProblemData problemData, out double rmsError, out double cvRmsError) {
|
---|
81 | IEnumerable<string> doubleVariables;
|
---|
82 | IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables;
|
---|
83 | double[,] inputMatrix;
|
---|
84 | PrepareData(problemData, out inputMatrix, out doubleVariables, out factorVariables);
|
---|
85 |
|
---|
86 | alglib.linearmodel lm = new alglib.linearmodel();
|
---|
87 | alglib.lrreport ar = new alglib.lrreport();
|
---|
88 | int nRows = inputMatrix.GetLength(0);
|
---|
89 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
90 |
|
---|
91 | int retVal = 1;
|
---|
92 | alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
|
---|
93 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
|
---|
94 | rmsError = ar.rmserror;
|
---|
95 | cvRmsError = ar.cvrmserror;
|
---|
96 |
|
---|
97 | double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant
|
---|
98 | alglib.lrunpack(lm, out coefficients, out nFeatures);
|
---|
99 |
|
---|
100 | int nFactorCoeff = factorVariables.Sum(kvp => kvp.Value.Count());
|
---|
101 | int nVarCoeff = doubleVariables.Count();
|
---|
102 | var tree = LinearModelToTreeConverter.CreateTree(factorVariables, coefficients.Take(nFactorCoeff).ToArray(),
|
---|
103 | doubleVariables.ToArray(), coefficients.Skip(nFactorCoeff).Take(nVarCoeff).ToArray(),
|
---|
104 | @const: coefficients[nFeatures]);
|
---|
105 |
|
---|
106 | SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeLinearInterpreter()), (IRegressionProblemData)problemData.Clone());
|
---|
107 | solution.Model.Name = "Linear Regression Model";
|
---|
108 | solution.Name = "Linear Regression Solution";
|
---|
109 | return solution;
|
---|
110 | }
|
---|
111 |
|
---|
112 | public static IRegressionSolution CreateSolution(IRegressionProblemData problemData, out double rmsError, out double cvRmsError) {
|
---|
113 | IEnumerable<string> doubleVariables;
|
---|
114 | IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables;
|
---|
115 | double[,] inputMatrix;
|
---|
116 | PrepareData(problemData, out inputMatrix, out doubleVariables, out factorVariables);
|
---|
117 |
|
---|
118 | alglib.linearmodel lm = new alglib.linearmodel();
|
---|
119 | alglib.lrreport ar = new alglib.lrreport();
|
---|
120 | int nRows = inputMatrix.GetLength(0);
|
---|
121 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
122 |
|
---|
123 | int retVal = 1;
|
---|
124 | alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
|
---|
125 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
|
---|
126 | rmsError = ar.rmserror;
|
---|
127 | cvRmsError = ar.cvrmserror;
|
---|
128 |
|
---|
129 | // get parameters of the model
|
---|
130 | double[] w;
|
---|
131 | int nVars;
|
---|
132 | alglib.lrunpack(lm, out w, out nVars);
|
---|
133 |
|
---|
134 | // ar.c is the covariation matrix, array[0..NVars,0..NVars].
|
---|
135 | // C[i, j] = Cov(A[i], A[j])
|
---|
136 |
|
---|
137 | var solution = new LinearRegressionModel(w, ar.c, cvRmsError, problemData.TargetVariable, doubleVariables, factorVariables)
|
---|
138 | .CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
|
---|
139 | solution.Name = "Linear Regression Solution";
|
---|
140 | return solution;
|
---|
141 | }
|
---|
142 |
|
---|
143 | private static void PrepareData(IRegressionProblemData problemData,
|
---|
144 | out double[,] inputMatrix,
|
---|
145 | out IEnumerable<string> doubleVariables,
|
---|
146 | out IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables) {
|
---|
147 | var dataset = problemData.Dataset;
|
---|
148 | string targetVariable = problemData.TargetVariable;
|
---|
149 | IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
|
---|
150 | IEnumerable<int> rows = problemData.TrainingIndices;
|
---|
151 | doubleVariables = allowedInputVariables.Where(dataset.VariableHasType<double>);
|
---|
152 | var factorVariableNames = allowedInputVariables.Where(dataset.VariableHasType<string>);
|
---|
153 | factorVariables = dataset.GetFactorVariableValues(factorVariableNames, rows);
|
---|
154 | double[,] binaryMatrix = dataset.ToArray(factorVariables, rows);
|
---|
155 | double[,] doubleVarMatrix = dataset.ToArray(doubleVariables.Concat(new string[] { targetVariable }), rows);
|
---|
156 | inputMatrix = binaryMatrix.HorzCat(doubleVarMatrix);
|
---|
157 |
|
---|
158 | if (inputMatrix.ContainsNanOrInfinity())
|
---|
159 | throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset.");
|
---|
160 | }
|
---|
161 | #endregion
|
---|
162 | }
|
---|
163 | }
|
---|