#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class SpatialCoevolution : ArtificialRegressionDataDescriptor { public override string Name { get { return "Spatial co-evolution F(x,y) = 1/(1 + x^(-4)) + 1/(1 + y^(-4))"; } } public override string Description { get { return "Paper: Evolutionary consequences of coevolving targets" + Environment.NewLine + "Authors: Ludo Pagie and Paulien Hogeweg" + Environment.NewLine + "Function: F(x,y) = 1/(1 + x^(-4)) + 1/(1 + y^(-4))" + Environment.NewLine + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine + "Terminals: only variables (no random constants)" + Environment.NewLine + "The fitness of a solution is defined as the mean of the absolute differences between " + "the target function and the solution over all problems on the basis of which it is evaluated. " + "A solution is considered completely ’correct’ if, for all 676 problems in the ’complete’ " + "problem set used in the static evaluation scheme, the absolute difference between " + "solution and target function is less than 0.01 (this is a so-called hit)."; } } protected override string TargetVariable { get { return "F"; } } protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 676; } } protected override int TestPartitionStart { get { return 676; } } protected override int TestPartitionEnd { get { return 1676; } } public int Seed { get; private set; } public SpatialCoevolution() : this((int)DateTime.Now.Ticks) { } public SpatialCoevolution(int seed) : base() { Seed = seed; } protected override List> GenerateValues() { List> data = new List>(); List evenlySpacedSequence = SequenceGenerator.GenerateSteps(-5, 5, 0.4m).Select(v => (double)v).ToList(); List> trainingData = new List>() { evenlySpacedSequence, evenlySpacedSequence }; var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(trainingData).ToList(); var rand = new MersenneTwister((uint)Seed); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(combinations[i].ToList()); data[i].AddRange(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), 1000, -5, 5).ToList()); } double x, y; List results = new List(); for (int i = 0; i < data[0].Count; i++) { x = data[0][i]; y = data[1][i]; results.Add(1 / (1 + Math.Pow(x, -4)) + 1 / (1 + Math.Pow(y, -4))); } data.Add(results); return data; } } }