#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class AircraftLift : ArtificialRegressionDataDescriptor { public override string Name { get { return "Aircraft Lift Coefficient C_L = C_La (a - a0) + C_Ld_e d_e S_HT / S_ref"; } } public override string Description { get { return "A full description of this problem instance is given in: " + Environment.NewLine + "Chen Chen, Changtong Luo, Zonglin Jiang, \"A multilevel block building algorithm for fast " + "modeling generalized separable systems\", Expert Systems with Applications, Volume 109, 2018, " + "Pages 25-34 https://doi.org/10.1016/j.eswa.2018.05.021. " + Environment.NewLine + "Function: C_L = C_La (a - a0) + C_Ld_e d_e S_HT / S_ref" + Environment.NewLine + "with C_La ∈ [0.4, 0.8]," + Environment.NewLine + "a ∈ [5°, 10°]," + Environment.NewLine + "C_Ld_e ∈ [0.4, 0.8]," + Environment.NewLine + "d_e ∈ [5°, 10°]," + Environment.NewLine + "S_HT ∈ [1m², 1.5m²]," + Environment.NewLine + "S_ref ∈ [5m², 7m²]," + Environment.NewLine + "a0 is set to -2°"; } } protected override string TargetVariable { get { return "C_L"; } } protected override string[] VariableNames { get { return new string[] { "C_La", "a", "a0", "C_Ld_e", "d_e", "S_HT", "C_L" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "C_La", "a", "a0", "C_Ld_e", "d_e", "S_HT" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionStart { get { return 100; } } protected override int TestPartitionEnd { get { return 200; } } public int Seed { get; private set; } public AircraftLift() : this((int)System.DateTime.Now.Ticks) { } public AircraftLift(int seed) { Seed = seed; } protected override List> GenerateValues() { var rand = new MersenneTwister((uint)Seed); List> data = new List>(); var C_La = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList(); var a = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 10.0).ToList(); var C_Ld_e = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList(); var d_e = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 10.0).ToList(); var S_HT = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList(); var S_ref = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 7.0).ToList(); List C_L = new List(); data.Add(C_La); data.Add(a); data.Add(C_Ld_e); data.Add(d_e); data.Add(S_HT); data.Add(S_ref); data.Add(C_L); double a0 = -2.0; for (int i = 0; i < C_La.Count; i++) { double C_Li = C_La[i] * (a[i] - a0) + C_Ld_e[i] * d_e[i] * S_HT[i] / S_ref[i]; C_L.Add(C_Li); } return data; } } }