#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . * * Author: Sabine Winkler */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.IntegerVectorEncoding; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HEAL.Attic; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.GrammaticalEvolution.Mappers; namespace HeuristicLab.Problems.GrammaticalEvolution { [StorableType("3E723725-9141-4259-BB1D-BACE36657086")] public abstract class GESymbolicDataAnalysisEvaluator : SingleSuccessorOperator, IGESymbolicDataAnalysisEvaluator, ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator, IStochasticOperator where T : class, IDataAnalysisProblemData { private const string RandomParameterName = "Random"; private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter"; private const string ProblemDataParameterName = "ProblemData"; private const string IntegerVectorParameterName = "IntegerVector"; private const string GenotypeToPhenotypeMapperParameterName = "GenotypeToPhenotypeMapper"; private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar"; private const string EstimationLimitsParameterName = "EstimationLimits"; private const string EvaluationPartitionParameterName = "EvaluationPartition"; private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples"; private const string ApplyLinearScalingParameterName = "ApplyLinearScaling"; private const string ValidRowIndicatorParameterName = "ValidRowIndicator"; public override bool CanChangeName { get { return false; } } #region parameter properties ILookupParameter IStochasticOperator.RandomParameter { get { return RandomParameter; } } public IValueLookupParameter RandomParameter { get { return (IValueLookupParameter)Parameters[RandomParameterName]; } } public ILookupParameter SymbolicExpressionTreeParameter { get { return (ILookupParameter)Parameters[SymbolicExpressionTreeParameterName]; } } public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter { get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; } } public IValueLookupParameter ProblemDataParameter { get { return (IValueLookupParameter)Parameters[ProblemDataParameterName]; } } public ILookupParameter IntegerVectorParameter { get { return (ILookupParameter)Parameters[IntegerVectorParameterName]; } } public ILookupParameter GenotypeToPhenotypeMapperParameter { get { return (ILookupParameter)Parameters[GenotypeToPhenotypeMapperParameterName]; } } public IValueLookupParameter SymbolicExpressionTreeGrammarParameter { get { return (IValueLookupParameter)Parameters[SymbolicExpressionTreeGrammarParameterName]; } } public IValueLookupParameter EvaluationPartitionParameter { get { return (IValueLookupParameter)Parameters[EvaluationPartitionParameterName]; } } public IValueLookupParameter EstimationLimitsParameter { get { return (IValueLookupParameter)Parameters[EstimationLimitsParameterName]; } } public IValueLookupParameter RelativeNumberOfEvaluatedSamplesParameter { get { return (IValueLookupParameter)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; } } public ILookupParameter ApplyLinearScalingParameter { get { return (ILookupParameter)Parameters[ApplyLinearScalingParameterName]; } } public IValueLookupParameter ValidRowIndicatorParameter { get { return (IValueLookupParameter)Parameters[ValidRowIndicatorParameterName]; } } #endregion [StorableConstructor] protected GESymbolicDataAnalysisEvaluator(StorableConstructorFlag _) : base(_) { } protected GESymbolicDataAnalysisEvaluator(GESymbolicDataAnalysisEvaluator original, Cloner cloner) : base(original, cloner) { } public GESymbolicDataAnalysisEvaluator() : base() { Parameters.Add(new ValueLookupParameter(RandomParameterName, "The random generator to use.")); Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree.")); Parameters.Add(new LookupParameter(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree.")); Parameters.Add(new ValueLookupParameter(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.")); Parameters.Add(new LookupParameter(IntegerVectorParameterName, "The symbolic data analysis solution encoded as an integer vector genome.")); Parameters.Add(new LookupParameter(GenotypeToPhenotypeMapperParameterName, "Maps the genotype (an integer vector) to the phenotype (a symbolic expression tree).")); Parameters.Add(new ValueLookupParameter(SymbolicExpressionTreeGrammarParameterName, "The tree grammar that defines the correct syntax of symbolic expression trees that should be created.")); Parameters.Add(new ValueLookupParameter(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated.")); Parameters.Add(new ValueLookupParameter(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees.")); Parameters.Add(new ValueLookupParameter(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.")); Parameters.Add(new LookupParameter(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.")); Parameters.Add(new ValueLookupParameter(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional).")); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } } }