#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*
* Author: Sabine Winkler
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HEAL.Attic;
namespace HeuristicLab.Problems.GrammaticalEvolution {
///
/// BreathFirstMapper
///
[Item("BreathFirstMapper", "Resolves the non-terminal symbols of the resulting phenotypic syntax tree in a breath-first manner.")]
[StorableType("7E8D7511-83C3-4F12-8883-BD20FCB58986")]
public class BreathFirstMapper : GenotypeToPhenotypeMapper {
[StorableConstructor]
protected BreathFirstMapper(StorableConstructorFlag _) : base(_) { }
protected BreathFirstMapper(BreathFirstMapper original, Cloner cloner) : base(original, cloner) { }
public BreathFirstMapper() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new BreathFirstMapper(this, cloner);
}
///
/// Maps a genotype (an integer vector) to a phenotype (a symbolic expression tree).
/// Breath-first approach.
///
/// random number generator
/// only used for PIGEMapper (ignore here)
/// only used for PIGEMapper (ignore here)
/// grammar definition
/// integer vector, which should be mapped to a tree
/// phenotype (a symbolic expression tree)
public override ISymbolicExpressionTree Map(IRandom random, IntMatrix bounds, int length,
ISymbolicExpressionGrammar grammar,
IntegerVector genotype) {
SymbolicExpressionTree tree = new SymbolicExpressionTree();
var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode();
var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode();
rootNode.AddSubtree(startNode);
tree.Root = rootNode;
MapBreathFirstIteratively(startNode, genotype, grammar,
genotype.Length, random);
return tree;
}
///
/// Genotype-to-Phenotype mapper (iterative breath-first approach, by using a queue -> FIFO).
///
/// first node of the tree with arity 1
/// integer vector, which should be mapped to a tree
/// grammar to determine the allowed child symbols for each node
/// maximum allowed subtrees (= number of used genomes)
/// random number generator
private void MapBreathFirstIteratively(ISymbolicExpressionTreeNode startNode,
IntegerVector genotype,
ISymbolicExpressionGrammar grammar,
int maxSubtreeCount, IRandom random) {
Queue> queue
= new Queue>(); // tuples of
int genotypeIndex = 0;
queue.Enqueue(new Tuple(startNode, 1));
while (queue.Count > 0) {
Tuple current = queue.Dequeue();
// foreach subtree of the current node, create a new node and enqueue it, if it is no terminal node
for (int i = 0; i < current.Item2; ++i) {
if (genotypeIndex >= maxSubtreeCount) {
// if all genomes were used, only add terminal nodes to the remaining subtrees
current.Item1.AddSubtree(GetRandomTerminalNode(current.Item1, grammar, random));
} else {
var newNode = GetNewChildNode(current.Item1, genotype, grammar, genotypeIndex, random);
int arity = SampleArity(random, newNode, grammar);
current.Item1.AddSubtree(newNode);
genotypeIndex++;
if (arity > 0) {
// new node has subtrees so enqueue the node
queue.Enqueue(new Tuple(newNode, arity));
}
}
}
}
}
}
}