#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HEAL.Attic; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Represents a Gaussian process model. /// [StorableType("37B5DC24-D6BB-4DA9-9A08-ACBB0ED1A9E9")] [Item("GaussianProcessModel", "Represents a Gaussian process posterior.")] public sealed class GaussianProcessModel : RegressionModel, IGaussianProcessModel { public override IEnumerable VariablesUsedForPrediction { get { return allowedInputVariables; } } [Storable] private double negativeLogLikelihood; public double NegativeLogLikelihood { get { return negativeLogLikelihood; } } [Storable] private double loocvNegLogPseudoLikelihood; public double LooCvNegativeLogPseudoLikelihood { get { return loocvNegLogPseudoLikelihood; } } [Storable] private double[] hyperparameterGradients; public double[] HyperparameterGradients { get { var copy = new double[hyperparameterGradients.Length]; Array.Copy(hyperparameterGradients, copy, copy.Length); return copy; } } [Storable] private ICovarianceFunction covarianceFunction; public ICovarianceFunction CovarianceFunction { get { return covarianceFunction; } } [Storable] private IMeanFunction meanFunction; public IMeanFunction MeanFunction { get { return meanFunction; } } [Storable] private string[] allowedInputVariables; public string[] AllowedInputVariables { get { return allowedInputVariables; } } [Storable] private double[] alpha; [Storable] private double sqrSigmaNoise; public double SigmaNoise { get { return Math.Sqrt(sqrSigmaNoise); } } [Storable] private double[] meanParameter; [Storable] private double[] covarianceParameter; private double[,] l; // used to be storable in previous versions (is calculated lazily now) private double[,] x; // scaled training dataset, used to be storable in previous versions (is calculated lazily now) // BackwardsCompatibility3.4 #region Backwards compatible code, remove with 3.5 [Storable(Name = "l")] // restore if available but don't store anymore private double[,] l_storable { set { this.l = value; } get { if (trainingDataset == null) return l; // this model has been created with an old version else return null; // if the training dataset is available l should not be serialized } } [Storable(Name = "x")] // restore if available but don't store anymore private double[,] x_storable { set { this.x = value; } get { if (trainingDataset == null) return x; // this model has been created with an old version else return null; // if the training dataset is available x should not be serialized } } #endregion [Storable] private IDataset trainingDataset; // it is better to store the original training dataset completely because this is more efficient in persistence [Storable] private int[] trainingRows; [Storable] private Scaling inputScaling; [StorableConstructor] private GaussianProcessModel(StorableConstructorFlag _) : base(_) { } private GaussianProcessModel(GaussianProcessModel original, Cloner cloner) : base(original, cloner) { this.meanFunction = cloner.Clone(original.meanFunction); this.covarianceFunction = cloner.Clone(original.covarianceFunction); if (original.inputScaling != null) this.inputScaling = cloner.Clone(original.inputScaling); this.trainingDataset = cloner.Clone(original.trainingDataset); this.negativeLogLikelihood = original.negativeLogLikelihood; this.loocvNegLogPseudoLikelihood = original.loocvNegLogPseudoLikelihood; this.sqrSigmaNoise = original.sqrSigmaNoise; if (original.meanParameter != null) { this.meanParameter = (double[])original.meanParameter.Clone(); } if (original.covarianceParameter != null) { this.covarianceParameter = (double[])original.covarianceParameter.Clone(); } // shallow copies of arrays because they cannot be modified this.trainingRows = original.trainingRows; this.allowedInputVariables = original.allowedInputVariables; this.alpha = original.alpha; this.l = original.l; this.x = original.x; } public GaussianProcessModel(IDataset ds, string targetVariable, IEnumerable allowedInputVariables, IEnumerable rows, IEnumerable hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction, bool scaleInputs = true) : base(targetVariable) { this.name = ItemName; this.description = ItemDescription; this.meanFunction = (IMeanFunction)meanFunction.Clone(); this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone(); this.allowedInputVariables = allowedInputVariables.ToArray(); int nVariables = this.allowedInputVariables.Length; meanParameter = hyp .Take(this.meanFunction.GetNumberOfParameters(nVariables)) .ToArray(); covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables)) .Take(this.covarianceFunction.GetNumberOfParameters(nVariables)) .ToArray(); sqrSigmaNoise = Math.Exp(2.0 * hyp.Last()); try { CalculateModel(ds, rows, scaleInputs); } catch (alglib.alglibexception ae) { // wrap exception so that calling code doesn't have to know about alglib implementation throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae); } } private void CalculateModel(IDataset ds, IEnumerable rows, bool scaleInputs = true) { this.trainingDataset = (IDataset)ds.Clone(); this.trainingRows = rows.ToArray(); this.inputScaling = scaleInputs ? new Scaling(ds, allowedInputVariables, rows) : null; x = GetData(ds, this.allowedInputVariables, this.trainingRows, this.inputScaling); IEnumerable y; y = ds.GetDoubleValues(TargetVariable, rows); int n = x.GetLength(0); var columns = Enumerable.Range(0, x.GetLength(1)).ToArray(); // calculate cholesky decomposed (lower triangular) covariance matrix var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns); this.l = CalculateL(x, cov, sqrSigmaNoise); // calculate mean var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, columns); double[] m = Enumerable.Range(0, x.GetLength(0)) .Select(r => mean.Mean(x, r)) .ToArray(); // calculate sum of diagonal elements for likelihood double diagSum = Enumerable.Range(0, n).Select(i => Math.Log(l[i, i])).Sum(); // solve for alpha double[] ym = y.Zip(m, (a, b) => a - b).ToArray(); int info; alglib.densesolverreport denseSolveRep; alglib.spdmatrixcholeskysolve(l, n, false, ym, out info, out denseSolveRep, out alpha); for (int i = 0; i < alpha.Length; i++) alpha[i] = alpha[i] / sqrSigmaNoise; negativeLogLikelihood = 0.5 * Util.ScalarProd(ym, alpha) + diagSum + (n / 2.0) * Math.Log(2.0 * Math.PI * sqrSigmaNoise); // derivatives int nAllowedVariables = x.GetLength(1); alglib.matinvreport matInvRep; double[,] lCopy = new double[l.GetLength(0), l.GetLength(1)]; Array.Copy(l, lCopy, lCopy.Length); alglib.spdmatrixcholeskyinverse(ref lCopy, n, false, out info, out matInvRep); if (info != 1) throw new ArgumentException("Can't invert matrix to calculate gradients."); // LOOCV log pseudo-likelihood (or log predictive probability) (GPML page 116 and 117) var sumLoo = 0.0; var ki = new double[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) ki[j] = cov.Covariance(x, i, j); ki[i] += sqrSigmaNoise; var yi = Util.ScalarProd(ki, alpha); var yi_loo = yi - alpha[i] / (lCopy[i, i] / sqrSigmaNoise); var s2_loo = 1.0 / (lCopy[i, i] / sqrSigmaNoise); var err = ym[i] - yi_loo; var nll_loo = 0.5 * Math.Log(2 * Math.PI * s2_loo) + 0.5 * err * err / s2_loo; sumLoo += nll_loo; } loocvNegLogPseudoLikelihood = sumLoo; for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) lCopy[i, j] = lCopy[i, j] / sqrSigmaNoise - alpha[i] * alpha[j]; } double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => lCopy[i, i]).Sum(); double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)]; for (int k = 0; k < meanGradients.Length; k++) { var meanGrad = new double[alpha.Length]; for (int g = 0; g < meanGrad.Length; g++) meanGrad[g] = mean.Gradient(x, g, k); meanGradients[k] = -Util.ScalarProd(meanGrad, alpha); } double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)]; if (covGradients.Length > 0) { for (int i = 0; i < n; i++) { for (int j = 0; j < i; j++) { var g = cov.CovarianceGradient(x, i, j); for (int k = 0; k < covGradients.Length; k++) { covGradients[k] += lCopy[i, j] * g[k]; } } var gDiag = cov.CovarianceGradient(x, i, i); for (int k = 0; k < covGradients.Length; k++) { // diag covGradients[k] += 0.5 * lCopy[i, i] * gDiag[k]; } } } hyperparameterGradients = meanGradients .Concat(covGradients) .Concat(new double[] { noiseGradient }).ToArray(); } private static double[,] GetData(IDataset ds, IEnumerable allowedInputs, IEnumerable rows, Scaling scaling) { if (scaling != null) { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 // TODO: completely remove Scaling class List variablesList = allowedInputs.ToList(); List rowsList = rows.ToList(); double[,] matrix = new double[rowsList.Count, variablesList.Count]; int col = 0; foreach (string column in variablesList) { var values = scaling.GetScaledValues(ds, column, rowsList); int row = 0; foreach (var value in values) { matrix[row, col] = value; row++; } col++; } return matrix; #endregion } else { return ds.ToArray(allowedInputs, rows); } } private static double[,] CalculateL(double[,] x, ParameterizedCovarianceFunction cov, double sqrSigmaNoise) { int n = x.GetLength(0); var l = new double[n, n]; // calculate covariances for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { l[j, i] = cov.Covariance(x, i, j) / sqrSigmaNoise; if (j == i) l[j, i] += 1.0; } } // cholesky decomposition var res = alglib.trfac.spdmatrixcholesky(ref l, n, false); if (!res) throw new ArgumentException("Matrix is not positive semidefinite"); return l; } public override IDeepCloneable Clone(Cloner cloner) { return new GaussianProcessModel(this, cloner); } // is called by the solution creator to set all parameter values of the covariance and mean function // to the optimized values (necessary to make the values visible in the GUI) public void FixParameters() { covarianceFunction.SetParameter(covarianceParameter); meanFunction.SetParameter(meanParameter); covarianceParameter = new double[0]; meanParameter = new double[0]; } #region IRegressionModel Members public override IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) { return GetEstimatedValuesHelper(dataset, rows); } public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) { return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData)); } #endregion private IEnumerable GetEstimatedValuesHelper(IDataset dataset, IEnumerable rows) { try { if (x == null) { x = GetData(trainingDataset, allowedInputVariables, trainingRows, inputScaling); } int n = x.GetLength(0); double[,] newX = GetData(dataset, allowedInputVariables, rows, inputScaling); int newN = newX.GetLength(0); var Ks = new double[newN][]; var columns = Enumerable.Range(0, newX.GetLength(1)).ToArray(); var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, columns); var ms = Enumerable.Range(0, newX.GetLength(0)) .Select(r => mean.Mean(newX, r)) .ToArray(); var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns); for (int i = 0; i < newN; i++) { Ks[i] = new double[n]; for (int j = 0; j < n; j++) { Ks[i][j] = cov.CrossCovariance(x, newX, j, i); } } return Enumerable.Range(0, newN) .Select(i => ms[i] + Util.ScalarProd(Ks[i], alpha)); } catch (alglib.alglibexception ae) { // wrap exception so that calling code doesn't have to know about alglib implementation throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae); } } public IEnumerable GetEstimatedVariances(IDataset dataset, IEnumerable rows) { try { if (x == null) { x = GetData(trainingDataset, allowedInputVariables, trainingRows, inputScaling); } int n = x.GetLength(0); var newX = GetData(dataset, allowedInputVariables, rows, inputScaling); int newN = newX.GetLength(0); var kss = new double[newN]; double[,] sWKs = new double[n, newN]; var columns = Enumerable.Range(0, newX.GetLength(1)).ToArray(); var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns); if (l == null) { l = CalculateL(x, cov, sqrSigmaNoise); } // for stddev for (int i = 0; i < newN; i++) kss[i] = cov.Covariance(newX, i, i); for (int i = 0; i < newN; i++) { for (int j = 0; j < n; j++) { sWKs[j, i] = cov.CrossCovariance(x, newX, j, i) / Math.Sqrt(sqrSigmaNoise); } } // for stddev alglib.ablas.rmatrixlefttrsm(n, newN, l, 0, 0, false, false, 0, ref sWKs, 0, 0); for (int i = 0; i < newN; i++) { var col = Util.GetCol(sWKs, i).ToArray(); var sumV = Util.ScalarProd(col, col); kss[i] += sqrSigmaNoise; // kss is V(f), add noise variance of predictive distibution to get V(y) kss[i] -= sumV; if (kss[i] < 0) kss[i] = 0; } return kss; } catch (alglib.alglibexception ae) { // wrap exception so that calling code doesn't have to know about alglib implementation throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae); } } } }