#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Optimization;
using HEAL.Attic;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
///
/// An operator that tracks the min average and max length of symbolic expression trees.
///
[Item("MinAverageMaxSymbolicExpressionTreeVariablesNumberAnalyzer", "An operator that tracks the min avgerage and max VariablesNumber of symbolic expression trees.")]
[StorableType("3D76565D-B334-463A-8D17-F43A75CBD892")]
public sealed class MinAverageMaxSymbolicExpressionTreeVariablesNumberAnalyzer : SymbolicDataAnalysisAnalyzer, ISymbolicExpressionTreeAnalyzer {
private const string ResultsParameterName = "Results";
private const string MinMaxAvgVariablesNumberResultName = "MinMaxAvgTreeVariablesNumber";
#region parameter properties
public ValueLookupParameter ResultsParameter {
get { return (ValueLookupParameter)Parameters[ResultsParameterName]; }
}
#endregion
[StorableConstructor]
private MinAverageMaxSymbolicExpressionTreeVariablesNumberAnalyzer(StorableConstructorFlag deserializing) : base() { }
private MinAverageMaxSymbolicExpressionTreeVariablesNumberAnalyzer(MinAverageMaxSymbolicExpressionTreeVariablesNumberAnalyzer original, Cloner cloner)
: base(original, cloner) {
AfterDeserialization();
}
public MinAverageMaxSymbolicExpressionTreeVariablesNumberAnalyzer()
: base() {
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new MinAverageMaxSymbolicExpressionTreeVariablesNumberAnalyzer(this, cloner);
}
public override IOperation Apply() {
var trees = SymbolicExpressionTreeParameter.ActualValue;
//var variablesNumber = new DoubleArray(trees.Length);
var variablesNumber = trees.Select(tree => tree.IterateNodesPostfix().OfType().Count()).ToArray();
var min = variablesNumber.Min();
var max = variablesNumber.Max();
var avg = variablesNumber.Average();
DataTable table;
if (ResultCollection.ContainsKey(MinMaxAvgVariablesNumberResultName)) {
table = (DataTable)ResultCollection[MinMaxAvgVariablesNumberResultName].Value;
} else {
table = new DataTable("Tree Variables Number");
ResultCollection.Add(new Result(MinMaxAvgVariablesNumberResultName, table));
table.Rows.Add(new DataRow("Min") { VisualProperties = { StartIndexZero = true } });
table.Rows.Add(new DataRow("Max") { VisualProperties = { StartIndexZero = true } });
table.Rows.Add(new DataRow("Avg") { VisualProperties = { StartIndexZero = true } });
}
table.Rows["Min"].Values.Add(min);
table.Rows["Max"].Values.Add(max);
table.Rows["Avg"].Values.Add(avg);
return base.Apply();
}
}
}