#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HEAL.Attic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Random; using System; using System.Collections.Generic; namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels { [Item("NetworkMap", "A map of models of models of models")] [StorableType("C200ECC2-6D33-4468-A538-580B07D75B3C")] public class EMMNetworkMap : EMMMapBase { private const string NegbourTypeParameterName = "NegbourType"; private const string NegbourNumberParameterName = "NegbourNumber"; public IFixedValueParameter NegbourTypeParameter { get { return (IFixedValueParameter)Parameters[NegbourTypeParameterName]; } } public IValueParameter NegbourNumberParameter { get { return (IValueParameter)Parameters[NegbourNumberParameterName]; } } public StringValue NegbourType { get { return NegbourTypeParameter.Value; } set { NegbourTypeParameter.Value.Value = value.Value; } } public IntValue NegbourNumber { get { return NegbourNumberParameter.Value; } set { NegbourNumberParameter.Value.Value = value.Value; } } #region constructors [StorableConstructor] protected EMMNetworkMap(StorableConstructorFlag _) : base(_) { } public override IDeepCloneable Clone(Cloner cloner) { return new EMMNetworkMap(this, cloner); } public EMMNetworkMap() : base() { Parameters.Add(new ValueParameter(NegbourNumberParameterName, "The parameter for FullMap type of map creation algorithm. Use one from: 10, 20.", new IntValue(10))); Parameters.Add(new FixedValueParameter(NegbourTypeParameterName, "The parameter for FullMap type of map creation algorithm. Use one from: Percent, Number.", new StringValue("Number"))); MapParameterUpdate(); ModelSet = new List(); } public EMMNetworkMap(EMMNetworkMap original, Cloner cloner) : base(original, cloner) { NegbourNumber = original.NegbourNumber; } #endregion #region Map Transformation override public void CreateMap(IRandom random) { MapParameterUpdate(); if (Map != null) { Map.Clear(); } ApplyNetworkMapCreationAlgorithm(random, ModelSetPreparation.CalculateDistances(ModelSet), Map, NegbourNumber.Value); } override public void CreateMap(IRandom random, ISymbolicDataAnalysisSingleObjectiveProblem problem) { MapParameterUpdate(); if (Map != null) { Map.Clear(); } ApplyNetworkMapCreationAlgorithm(random, ModelSetPreparation.DistanceMatrixCalculation(ModelSet, DistanceParametr, problem), Map, NegbourNumber.Value); } override public void MapRead(IEnumerable trees) { base.MapRead(trees); string fileName = ("Map" + DistanceParametr + ".txt"); Map = FileComuncations.IntMatrixFromFileRead(fileName); NegbourNumber.Value = Map[0].Count; } public static void ApplyNetworkMapCreationAlgorithm(IRandom random, double[,] distances, List> map, int neghboorNumber = 10) { int mapSize = distances.GetLength(0); List currentList = new List(); for (int i = 0; i < mapSize; i++) { map.Add(new List()); for (int j = 0; j < mapSize; j++) { currentList.Add(distances[i, j]); } map[i].Add(HelpFunctions.ChooseMinElementIndex(currentList)); while (map[i].Count < neghboorNumber) { map[i].Add(HelpFunctions.ChooseMinElementIndex(currentList, i, map[i])); } currentList.Clear(); } } protected void MapParameterUpdate() { switch (NegbourType.Value) { case "Percent": NegbourNumber.Value = Convert.ToInt32((Convert.ToDouble(ModelSet.Count)) * (Convert.ToDouble(NegbourNumber.Value)) / 100.0); break; case "Number": NegbourNumber.Value = NegbourNumber.Value; break; default: NegbourNumber.Value = NegbourNumber.Value; break; } } #endregion #region Dialog with surroundings public override ISymbolicExpressionTree NewModelForMutation(IRandom random, out int treeNumber, int parentTreeNumber) { treeNumber = Map[parentTreeNumber].SampleRandom(random); return (ISymbolicExpressionTree)ModelSet[treeNumber].Clone(); } override public ISymbolicExpressionTree NewModelForInizializtionNotTree(IRandom random, out int treeNumber) { var newTree = NewModelForInizializtion(random, out treeNumber); return newTree; } #endregion } }