#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Random;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
[Item("IslandMap", "A map of models of models of models")]
[StorableType("E4AB04B9-FD5D-47EE-949D-243660754F3A")]
public class EMMIslandMap : EMMMapBase {
[Storable]
public List ClusterNumber { get; set; } // May be only Island Map really need it
public double[] AverageDistance { get; private set; }
private const string ClusterNumbersParameterName = "ClusterNumbers";
private const string ClusterNumbersShowParameterName = "ClusterNumbersShow";
public IValueParameter ClusterNumbersParameter {
get { return (IValueParameter)Parameters[ClusterNumbersParameterName]; }
}
public IValueParameter ClusterNumbersShowParameter {
get { return (IValueParameter)Parameters[ClusterNumbersShowParameterName]; }
}
public IntValue ClusterNumbers {
get { return ClusterNumbersParameter.Value; }
set { ClusterNumbersParameter.Value = value; }
}
public IntValue ClusterNumbersShow {
get { return ClusterNumbersShowParameter.Value; }
set { ClusterNumbersShowParameter.Value = value; }
}
#region constructors
[StorableConstructor]
protected EMMIslandMap(StorableConstructorFlag _) : base(_) { }
public EMMIslandMap() {
Parameters.Add(new ValueParameter(ClusterNumbersParameterName, "The number of clusters for model Map.", new IntValue(10)));
Parameters.Add(new ValueParameter(ClusterNumbersShowParameterName, "The number of clusters for model Map.", new IntValue(10)));
ModelSet = new List();
ClusterNumber = new List();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new EMMIslandMap(this, cloner);
}
public EMMIslandMap(EMMIslandMap original, Cloner cloner) : base(original, cloner) {
if (original.ClusterNumber != null) {
ClusterNumber = original.ClusterNumber.ToList();
}
}
#endregion
#region Map Apply Functions
override public void CreateMap(IRandom random) {
var totalDistance = ModelSetPreparation.CalculateDistances(ModelSet); //structure distances
CreateMap(random, totalDistance);
}
override public void CreateMap(IRandom random, ISymbolicDataAnalysisSingleObjectiveProblem problem) {
CreateMap(random, ModelSetPreparation.TotalDistanceMatrixCalculation(random, problem, ModelSet, DistanceParametr));
}
override public void CreateMap(IRandom random, double[,] totalDistance) {
if (Map != null) {
Map.Clear();
}
ClusterNumbersShow.Value = KMeansClusterizationAlgorithm.ApplyClusteringAlgorithm(random, totalDistance, ClusterNumber, ClusterNumbers.Value);
MapSizeCheck(ClusterNumbersShow.Value);
for (int i = 0; i < ModelSet.Count; i++) {
Map[ClusterNumber[i]].Add(i);
}
AverageDistanceInClusterCalculation(totalDistance, ClusterNumbersShow.Value);
}
override public void MapRead(IEnumerable trees) {
base.MapRead(trees);
string fileName = ("Map" + DistanceParametr + ".txt");
Map = FileComuncations.IntMatrixFromFileRead(fileName);
ClusterNumbers.Value = Map.Count;
ClusterNumbersShow.Value = ClusterNumbers.Value;
ClusterNumbersCalculate();
AverageDistanceInClusterCalculation(ModelSetPreparation.CalculateDistances(ModelSet), Map.Count);
}
override public ISymbolicExpressionTree NewModelForInizializtionNotTree(IRandom random, out int treeNumber) {
return NewModelForInizializtion(random, out treeNumber);
}
private void AverageDistanceInClusterCalculation(double[,] distances, int k) {
AverageDistance = new double[k];
var temp = new List();
for (int i = 0; i < k; i++) {
KMeansClusterizationAlgorithm.AverageClusterDistanceCalculation(temp, distances, ClusterNumber, ClusterNumber.Count, i);
var number = HelpFunctions.ChooseMinElementIndex(temp);
AverageDistance[i] = temp[number] / Map[i].Count;
temp.Clear();
}
}
public override ISymbolicExpressionTree NewModelForMutation(IRandom random, out int treeNumber, int parentTreeNumber) {
if (parentTreeNumber == -10) {
treeNumber = random.Next(ModelSet.Count);
} else {
treeNumber = Map[ClusterNumber[parentTreeNumber]].SampleRandom(random);
}
return (ISymbolicExpressionTree)ModelSet[treeNumber].Clone();
}
public void ClusterNumbersCalculate() {
for (int i = 0; i < Map.Count; i++) {
for (int j = 0; j < Map[i].Count; j++) {
ClusterNumber.Add(0);
}
}
for (int i = 0; i < Map.Count; i++) {
for (int j = 0; j < Map[i].Count; j++) {
ClusterNumber[Map[i][j]] = i;
}
}
}
#endregion
}
}