#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Random;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
[Item("EMMChangeNodeTypeManipulation", "Selects a random tree node and changes the symbol.")]
[StorableType("990D3946-7F06-48B4-B8DB-F8E308D6304D")]
public sealed class EMMMutators : SymbolicExpressionTreeManipulator {
private const int MAX_TRIES = 100;
private const string ModelSetParameterName = "Models";
private const string ClusterNumberParameterName = "ClusterNumber";
private const string MapParameterName = "Map";
public ILookupParameter> ModelSetParameter {
get { return (ILookupParameter>)Parameters[ModelSetParameterName]; }
}
public ILookupParameter> ClusterNumberParameter {
get { return (ILookupParameter>)Parameters[ClusterNumberParameterName]; }
}
public ILookupParameter>> MapParameter {
get { return (ILookupParameter>>)Parameters[MapParameterName]; }
}
public ItemList ModelSet => ModelSetParameter.ActualValue;
public ItemList ClusterNumber => ClusterNumberParameter.ActualValue;
public ItemList> Map => MapParameter.ActualValue;
[StorableConstructor]
private EMMMutators(StorableConstructorFlag _) : base(_) { }
private EMMMutators(EMMMutators original, Cloner cloner) : base(original, cloner) { }
public EMMMutators() : base() {
Parameters.Add(new LookupParameter>(ModelSetParameterName));
Parameters.Add(new LookupParameter>(ClusterNumberParameterName));
Parameters.Add(new LookupParameter>>(MapParameterName));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new EMMMutators(this, cloner);
}
protected override void Manipulate(IRandom random, ISymbolicExpressionTree symbolicExpressionTree) {
EMMMutatorsPart(random, symbolicExpressionTree, ModelSet, ClusterNumber, Map);
}
public static void EMMMutatorsPart(IRandom random, ISymbolicExpressionTree symbolicExpressionTree, ItemList modelSet, ItemList clusterNumber, ItemList> map) {
List allowedSymbols = new List();
ISymbolicExpressionTreeNode parent;
int childIndex;
ISymbolicExpressionTreeNode child;
// repeat until a fitting parent and child are found (MAX_TRIES times)
int tries = 0;
do {
#pragma warning disable 612, 618
parent = symbolicExpressionTree.Root.IterateNodesPrefix().Skip(1).Where(n => n.SubtreeCount > 0).SelectRandom(random);
#pragma warning restore 612, 618
childIndex = random.Next(parent.SubtreeCount);
child = parent.GetSubtree(childIndex);
int existingSubtreeCount = child.SubtreeCount;
allowedSymbols.Clear();
foreach (var symbol in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, childIndex)) {
// check basic properties that the new symbol must have
if (symbol.Name != child.Symbol.Name &&
symbol.InitialFrequency > 0 &&
existingSubtreeCount <= parent.Grammar.GetMinimumSubtreeCount(symbol) &&
existingSubtreeCount >= parent.Grammar.GetMaximumSubtreeCount(symbol)) {
// check that all existing subtrees are also allowed for the new symbol
bool allExistingSubtreesAllowed = true;
for (int existingSubtreeIndex = 0; existingSubtreeIndex < existingSubtreeCount && allExistingSubtreesAllowed; existingSubtreeIndex++) {
var existingSubtree = child.GetSubtree(existingSubtreeIndex);
allExistingSubtreesAllowed &= parent.Grammar.IsAllowedChildSymbol(symbol, existingSubtree.Symbol, existingSubtreeIndex);
}
if (allExistingSubtreesAllowed) {
allowedSymbols.Add(symbol);
}
}
}
tries++;
} while (tries < MAX_TRIES && allowedSymbols.Count == 0);
if (tries < MAX_TRIES) {
var weights = allowedSymbols.Select(s => s.InitialFrequency).ToList();
#pragma warning disable 612, 618
var newSymbol = allowedSymbols.SelectRandom(weights, random);
#pragma warning restore 612, 618
// replace the old node with the new node
var newNode = newSymbol.CreateTreeNode();
if (newNode is TreeModelTreeNode treeNode) {
int p = random.Next(map.Count);
if (child is TreeModelTreeNode chNode) { p = chNode.ClusterNumer; }
treeNode.TreeNumber = map[p].SampleRandom(random).Value;
treeNode.Tree = (ISymbolicExpressionTree)modelSet[treeNode.TreeNumber].Clone();
treeNode.ClusterNumer = p;
treeNode.SetLocalParameters(random, 0.5);
} else if (newNode.HasLocalParameters)
newNode.ResetLocalParameters(random);
foreach (var subtree in child.Subtrees)
newNode.AddSubtree(subtree);
parent.RemoveSubtree(childIndex);
parent.InsertSubtree(childIndex, newNode);
}
}
}
}