Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2988_ModelsOfModels2/HeuristicLab.Algorithms.EMM/EMMMapTreeModel.cs @ 16752

Last change on this file since 16752 was 16734, checked in by msemenki, 6 years ago

#2988: Add Model Symbol Frequency Analyzer and Model's Clusters Frequency Analyzer. Fix Bag's with Keys. Fix changing during mutation for Variables Types in SubModels .

File size: 5.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HEAL.Attic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
26using HeuristicLab.Problems.DataAnalysis.Symbolic;
27using System.Collections.Generic;
28using System.IO;
29using System.Linq;
30
31namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
32  [Item("TreeModelMap", "A map of models of models of models")]
33  [StorableType("E4AB04B9-FD5D-47EE-949D-243660754F3A")]
34  public class EMMMapTreeModel : EMMMapBase<ISymbolicExpressionTree> {
35    #region conctructors
36    [StorableConstructor]
37    protected EMMMapTreeModel(StorableConstructorFlag _) : base(_) { }
38    public EMMMapTreeModel() : this(1) { }
39    public EMMMapTreeModel(int k) {
40      K = k;
41      ModelSet = new List<ISymbolicExpressionTree>();
42      ClusterNumber = new List<int>();
43      Map = new List<List<int>>();
44    }
45    public EMMMapTreeModel(EMMMapTreeModel original, Cloner cloner) {
46      //original.ModelSet.ForEach(x => ModelSet.Add((ISymbolicExpressionTree)x.Clone(cloner)));
47      //original.ClusterNumber.ForEach(x => ClusterNumber.Add(x));
48      //original.Map.ForEach(x => Map.Add(x));
49      if (original.ModelSet != null) {
50        ModelSet = original.ModelSet.Select(cloner.Clone).ToList();
51      }
52      if (original.ClusterNumber != null) {
53        ClusterNumber = original.ClusterNumber.ToList();
54      }
55      if (original.Map != null) {
56        Map = original.Map.Select(x => x.ToList()).ToList();
57      }
58      K = original.K;
59    }
60    public EMMMapTreeModel(IRandom random, IEnumerable<ISymbolicExpressionTree> trees, int k) : this(k) {
61      ModelSet = trees.ToList();
62      CalculateDistances();
63      CreateMap(random, k);
64    }
65    public EMMMapTreeModel(IRandom random, IEnumerable<ISymbolicExpressionTree> trees) : this(1) {
66      ModelSet = trees.ToList();
67      string input = File.ReadAllText("Map.txt");
68
69      int i = 0;
70      foreach (var row in input.Split('\n')) {
71        Map.Add(new List<int>());
72        foreach (var col in row.Trim().Split(' ')) {
73          Map[i].Add(int.Parse(col.Trim()));
74        }
75        i++;
76      }
77      K = Map.Count;
78      MapPreparation();
79    }
80    public override IDeepCloneable Clone(Cloner cloner) {
81      return new EMMMapTreeModel(this, cloner);
82    }
83    #endregion
84    #region MapTransformation
85    override protected void CalculateDistances() {
86      Distances = SymbolicExpressionTreeHash.ComputeSimilarityMatrix(ModelSet, simplify: false, strict: true);
87      for (int i = 0; i < ModelSet.Count - 1; i++) {
88        for (int j = i + 1; j < ModelSet.Count; j++) {
89          Distances[j, i] = Distances[i, j] = 1 - Distances[i, j];
90        }
91      }
92    }
93    override protected void CreateMap(IRandom random, int k) {
94      K = k;
95      //Clusterization
96      EMModelsClusterizationAlgorithm clusteringAlgorithm = new EMModelsClusterizationAlgorithm(K);
97      K = clusteringAlgorithm.Apply(random, Distances, ClusterNumber);
98      // Cheking a Map size
99      if (Map != null) Map.Clear();
100      else Map = new List<List<int>>();
101      if (Map.Count != K) {
102        if (Map.Count != 0) {
103          Map.Clear();
104        }
105        for (int i = 0; i < K; i++) {
106          Map.Add(new List<int>());
107        }
108      }
109      // Map fulfilment
110      for (int i = 0; i < ModelSet.Count; i++) {
111        Map[ClusterNumber[i]].Add(i);
112      }
113    }
114    protected void MapPreparation() {
115      for (int i = 0; i < Map.Count; i++) {
116        for (int j = 0; j < Map[i].Count; j++) {
117          ClusterNumber.Add(0);
118        }
119      }
120      for (int i = 0; i < Map.Count; i++) {
121        for (int j = 0; j < Map[i].Count; j++) {
122          ClusterNumber[Map[i][j]] = i;
123        }
124      }
125    }
126    #endregion
127    #region Dialog with surroudings
128    override public ISymbolicExpressionTree NewModelForInizializtion(IRandom random, out int cluster, out int treeNumber) {
129      treeNumber = random.Next(ModelSet.Count);
130      cluster = ClusterNumber[treeNumber];
131      return (ISymbolicExpressionTree)ModelSet[treeNumber].Clone();
132    }
133    public string[] MapToString() {
134      string[] s;
135      s = new string[K];
136      for (int i = 0; i < K; i++) {
137        s[i] = "";
138        for (int j = 0; j < Map[i].Count; j++) {
139          s[i] += Map[i][j].ToString();
140          s[i] += " ";
141        }
142      }
143      return s;
144    }
145    public string[] MapToSee() {
146      var fmt = new InfixExpressionFormatter();
147      string[] s;
148      s = new string[(ModelSet.Count) + 1];
149      s[0] = "ClusterNumber" + "," + "Modfelnumber" + "," + "Model";
150      for (int i = 1; i < ((ModelSet.Count) + 1); i++) {
151        s[i] = ClusterNumber[i - 1].ToString() + "," + (i - 1).ToString() + "," + fmt.Format(ModelSet[i - 1]);
152      }
153      return s;
154    }
155
156    #endregion
157  }
158}
Note: See TracBrowser for help on using the repository browser.