#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using System;
using System.Collections.Generic;
namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
[Item("DistanceMap", "A map of models of models of models")]
[StorableType("456692FB-2149-4359-8106-45D59D2D7FA0")]
public class EMMDisatanceMap : EMMMapBase {
[Storable]
public List> Probabilities { get; set; }
#region conctructors
[StorableConstructor]
protected EMMDisatanceMap(StorableConstructorFlag _) : base(_) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new EMMDisatanceMap(this, cloner);
}
public EMMDisatanceMap() : base() { ModelSet = new List(); }
public EMMDisatanceMap(EMMDisatanceMap original, Cloner cloner) : base(original, cloner) { }
#endregion
#region MapCreation
override public void CreateMap(IRandom random, int k) {
Probabilities = new List>();
MapSizeCheck(ModelSet.Count);
ApplyDistanceMapCreationAlgorithm(random, CalculateDistances(), Map, Probabilities);
}
public static void ApplyDistanceMapCreationAlgorithm(IRandom random, double[,] distances, List> map, List> probabilities) {
int mapSize = distances.GetLength(0);
for (int t = 0; t < mapSize; t++) {
probabilities.Add(new List());
double tempSum = 0;
for (int i = 0; i < mapSize; i++) {
tempSum += Math.Log(distances[i, t]);
}
for (int i = 0; i < mapSize; i++) {
if (distances[i, t].IsAlmost(0))
continue;
map[t].Add(i);
probabilities[t].Add(Math.Log(distances[i, t]) / tempSum);
}
}
}
#endregion
#region MapApplayFunctions
public override ISymbolicExpressionTree NewModelForMutation(IRandom random, out int treeNumber, int parentTreeNumber) {
treeNumber = HelpFunctions.OneElementFromListProportionalSelection(random, Probabilities[parentTreeNumber]);
return (ISymbolicExpressionTree)ModelSet[treeNumber].Clone();
}
override public ISymbolicExpressionTree NewModelForInizializtionNotTree(IRandom random, out int treeNumber) {
return NewModelForInizializtion(random, out treeNumber);
}
#endregion
}
}