Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2988_ModelsOfModels2/HeuristicLab.Algorithms.EMM/EMMAlgorithm.cs @ 16752

Last change on this file since 16752 was 16734, checked in by msemenki, 6 years ago

#2988: Add Model Symbol Frequency Analyzer and Model's Clusters Frequency Analyzer. Fix Bag's with Keys. Fix changing during mutation for Variables Types in SubModels .

File size: 12.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HEAL.Attic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Problems.DataAnalysis.Symbolic;
28using HeuristicLab.Random;
29using HeuristicLab.Selection;
30using System.Collections.Generic;
31using System.IO;
32using System.Linq;
33using CancellationToken = System.Threading.CancellationToken;
34using Variable = HeuristicLab.Core.Variable;
35
36namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
37  [Item("EvolvmentModelsOfModels Algorithm ", "EMM implementation")]
38  [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 125)]
39  [StorableType("AD23B21F-089A-4C6C-AD2E-1B01E7939CF5")]
40  public class EMMAlgorithm : EvolvmentModelsOfModelsAlgorithmBase {
41    public EMMMapTreeModel Map { get; private set; }
42
43    public EMMAlgorithm() : base() { }
44    protected EMMAlgorithm(EMMAlgorithm original, Cloner cloner) : base(original, cloner) {
45      if (original.Map != null) {
46        Map = cloner.Clone(original.Map);
47      }
48    }
49    public override IDeepCloneable Clone(Cloner cloner) {
50      return new EMMAlgorithm(this, cloner);
51    }
52
53    [StorableConstructor]
54    protected EMMAlgorithm(StorableConstructorFlag _) : base(_) { }
55
56    protected override void Run(CancellationToken cancellationToken) {
57      InfixExpressionParser parser = new InfixExpressionParser();
58      var trees = File.ReadAllLines(InputFileParameter.Value.Value).Select(parser.Parse);
59      // this.Problem.SymbolicExpressionTreeGrammar;
60      /*   Problem.ProblemData.Dataset.ColumnNames.Take(2).ToList();
61         trees.First().Root.Grammar.ContainsSymbol((IVariable)a).
62           = this.Problem.SymbolicExpressionTreeGrammar;*/
63      int flag = 1;
64      switch (flag) {
65        case 0: // for case when we want only create map, and do  not want made somting also.
66          Map = new EMMMapTreeModel(RandomParameter.Value, trees, ClusterNumbersParameter.Value.Value);
67          ClusterNumbersParameter.Value.Value = Map.K;
68          File.WriteAllLines("Map.txt", Map.MapToString());
69          File.WriteAllLines("MapToSee.txt", Map.MapToSee());
70          globalScope = new Scope("Global Scope");
71          executionContext = new ExecutionContext(null, this, globalScope);
72          break;
73        case 1: // for case when we want read existed map and work with it;
74          Map = new EMMMapTreeModel(RandomParameter.Value, trees);
75          ClusterNumbersParameter.Value.Value = Map.K;
76          if (previousExecutionState != ExecutionState.Paused) {
77            InitializeAlgorithm(cancellationToken);
78          }
79          globalScope.Variables.Add(new Variable("TreeModelMap", Map));
80          EMMEvolutionaryAlgorithmRun(cancellationToken);
81          break;
82
83        default: //for case of usial from zero step starting
84          Map = new EMMMapTreeModel(RandomParameter.Value, trees, ClusterNumbersParameter.Value.Value);
85          ClusterNumbersParameter.Value.Value = Map.K;
86          if (previousExecutionState != ExecutionState.Paused) {
87            InitializeAlgorithm(cancellationToken);
88          }
89          globalScope.Variables.Add(new Variable("TreeModelMap", Map));
90          EMMEvolutionaryAlgorithmRun(cancellationToken);
91          break;
92      }
93
94    }
95    private void EMMEvolutionaryAlgorithmRun(CancellationToken cancellationToken) {
96      var bestSelector = new BestSelector();
97      bestSelector.CopySelected = new BoolValue(false);
98      bestSelector.MaximizationParameter.ActualName = "Maximization";
99      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
100      bestSelector.QualityParameter.ActualName = "Quality";
101
102      var populationSize = PopulationSize.Value;
103      var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
104      var crossover = Crossover;
105      var selector = Selector;
106      var groupSize = GroupSize.Value;
107      var crossoverProbability = CrossoverProbability.Value;
108      var mutator = Mutator;
109      var mutationProbability = MutationProbability.Value;
110      var evaluator = Problem.Evaluator;
111      var analyzer = Analyzer;
112      var rand = RandomParameter.Value;
113      var elites = Elites.Value;
114
115      // cancellation token for the inner operations which should not be immediately cancelled
116      var innerToken = new CancellationToken();
117
118      while (evaluatedSolutions < maximumEvaluatedSolutions && !cancellationToken.IsCancellationRequested) {
119
120        var op4 = executionContext.CreateChildOperation(bestSelector, executionContext.Scope); // select elites
121        ExecuteOperation(executionContext, innerToken, op4);
122
123        var remaining = executionContext.Scope.SubScopes.Single(x => x.Name == "Remaining");
124        executionContext.Scope.SubScopes.AddRange(remaining.SubScopes);
125        var selected = executionContext.Scope.SubScopes.Single(x => x.Name == "Selected");
126        executionContext.Scope.SubScopes.AddRange(selected.SubScopes);
127        population.Clear();
128        population.AddRange(selected.SubScopes.Select(x => new EMMSolution(x)));
129        executionContext.Scope.SubScopes.Remove(remaining);
130        executionContext.Scope.SubScopes.Remove(selected);
131
132        var op = executionContext.CreateChildOperation(selector, executionContext.Scope);// select the rest of the population
133        ExecuteOperation(executionContext, innerToken, op);
134
135        remaining = executionContext.Scope.SubScopes.Single(x => x.Name == "Remaining");
136        selected = executionContext.Scope.SubScopes.Single(x => x.Name == "Selected");
137
138        for (int i = 0; i < selector.NumberOfSelectedSubScopesParameter.Value.Value; i += 2) {
139          // crossover
140          IScope childScope = null;
141          if (rand.NextDouble() < crossoverProbability) {
142            childScope = new Scope($"{i}+{i + 1}") { Parent = executionContext.Scope };
143            childScope.SubScopes.Add(selected.SubScopes[i]);
144            childScope.SubScopes.Add(selected.SubScopes[i + 1]);
145            var op1 = executionContext.CreateChildOperation(crossover, childScope);
146            ExecuteOperation(executionContext, innerToken, op1);
147            childScope.SubScopes.Clear();
148          }
149
150          childScope = childScope ?? selected.SubScopes[i];
151          // mutation
152          if (rand.NextDouble() < mutationProbability) {
153            var op2 = executionContext.CreateChildOperation(mutator, childScope);
154            ExecuteOperation(executionContext, innerToken, op2);
155          }
156
157          // evaluation
158          if (childScope != null) {
159            var op3 = executionContext.CreateChildOperation(evaluator, childScope);
160            ExecuteOperation(executionContext, innerToken, op3);
161            var qualities = (DoubleValue)childScope.Variables["Quality"].Value;
162            var childSolution = new EMMSolution(childScope);
163            // set child qualities
164            childSolution.Qualities = qualities;
165            ++evaluatedSolutions;
166            population.Add(new EMMSolution(childScope));
167          } else {// no crossover or mutation were applied, a child was not produced, do nothing
168            population.Add(new EMMSolution(selected.SubScopes[i]));
169          }
170
171          if (evaluatedSolutions >= maximumEvaluatedSolutions) {
172            break;
173          }
174
175        }
176        globalScope.SubScopes.Replace(population.Select(x => (IScope)x.Individual));
177        // run analyzer
178        var analyze = executionContext.CreateChildOperation(analyzer, globalScope);
179        ExecuteOperation(executionContext, innerToken, analyze);
180        Results.AddOrUpdateResult("Evaluated Solutions", new IntValue(evaluatedSolutions));
181      }
182    }
183    protected void InitializeAlgorithm(CancellationToken cancellationToken) {
184      globalScope = new Scope("Global Scope");
185      executionContext = new ExecutionContext(null, this, globalScope);
186
187      // set the execution context for parameters to allow lookup
188      foreach (var parameter in Problem.Parameters.OfType<IValueParameter>()) {  //
189                                                                                 // we need all of these in order for the wiring of the operators to work
190        globalScope.Variables.Add(new Core.Variable(parameter.Name, parameter.Value));
191      }
192      globalScope.Variables.Add(new Core.Variable("Results", Results)); // make results available as a parameter for analyzers etc.
193
194      var rand = RandomParameter.Value;
195      if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
196      rand.Reset(Seed);
197
198      var populationSize = PopulationSize.Value;
199
200      InitializePopulation(executionContext, cancellationToken, rand);
201
202      // initialize data structures for map clustering
203      var models = new ItemList<ISymbolicExpressionTree>(Map.ModelSet);
204      var map = new ItemList<ItemList<IntValue>>();
205      foreach (var list in Map.Map) {
206        map.Add(new ItemList<IntValue>(list.Select(x => new IntValue(x))));
207      }
208      var clusterNumber = new ItemList<IntValue>(Map.ClusterNumber.Select(x => new IntValue(x)));
209      globalScope.Variables.Add(new Core.Variable("Models", models));
210      globalScope.Variables.Add(new Core.Variable("Map", map));
211      globalScope.Variables.Add(new Core.Variable("ClusterNumber", clusterNumber));
212
213      evaluatedSolutions = populationSize;
214      base.Initialize(cancellationToken);
215    }
216    private void InitializePopulation(ExecutionContext executionContext, CancellationToken cancellationToken, IRandom random) {
217      var creator = Problem.SolutionCreator;
218      var evaluator = Problem.Evaluator;
219      var populationSize = PopulationSize.Value;
220      population = new List<IEMMSolution>(populationSize);
221
222      var parentScope = executionContext.Scope; //main scope for the next step work
223      // first, create all individuals
224      for (int i = 0; i < populationSize; ++i) {
225        var childScope = new Scope(i.ToString()) { Parent = parentScope };
226        ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(creator, childScope));
227        var name = ((ISymbolicExpressionTreeCreator)creator).SymbolicExpressionTreeParameter.ActualName;
228        var tree = (ISymbolicExpressionTree)childScope.Variables[name].Value;
229        foreach (var node in tree.IterateNodesPostfix().OfType<TreeModelTreeNode>()) {
230          node.Tree = Map.NewModelForInizializtion(random, out int cluster, out int treeNumber);
231          node.SetLocalParameters(random, 0.5);
232          node.ClusterNumer = cluster;
233          node.TreeNumber = treeNumber;
234        }
235        parentScope.SubScopes.Add(childScope);
236      }
237
238      // then, evaluate them and update qualities
239      for (int i = 0; i < populationSize; ++i) {
240        var childScope = parentScope.SubScopes[i];
241        ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(evaluator, childScope));
242
243        var qualities = (DoubleValue)childScope.Variables["Quality"].Value;
244        var solution = new EMMSolution(childScope);  // Create solution and push individual inside
245
246        solution.Qualities = qualities;
247        population.Add(solution);  // push solution to population
248      }
249    }
250  }
251
252}
253
Note: See TracBrowser for help on using the repository browser.