#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HEAL.Attic;
using HeuristicLab.Parameters;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[StorableType("DE6C1E1E-D7C1-4070-847E-63B68562B10C")]
[Item("IntervalInterpreter", "Intperter for calculation of intervals of symbolic models.")]
public sealed class IntervalInterpreter : ParameterizedNamedItem, IStatefulItem {
private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
public IFixedValueParameter EvaluatedSolutionsParameter {
get { return (IFixedValueParameter)Parameters[EvaluatedSolutionsParameterName]; }
}
public int EvaluatedSolutions {
get { return EvaluatedSolutionsParameter.Value.Value; }
set { EvaluatedSolutionsParameter.Value.Value = value; }
}
[StorableConstructor]
private IntervalInterpreter(StorableConstructorFlag _) : base(_) { }
private IntervalInterpreter(IntervalInterpreter original, Cloner cloner)
: base(original, cloner) { }
public IntervalInterpreter()
: base("IntervalInterpreter", "Intperter for calculation of intervals of symbolic models.") {
Parameters.Add(new FixedValueParameter(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new IntervalInterpreter(this, cloner);
}
private readonly object syncRoot = new object();
#region IStatefulItem Members
public void InitializeState() {
EvaluatedSolutions = 0;
}
public void ClearState() { }
#endregion
public Interval GetSymbolicExpressionTreeInterval(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable rows = null) {
var variableRanges = DatasetUtil.GetVariableRanges(dataset, rows);
return GetSymbolicExpressionTreeInterval(tree, variableRanges);
}
public Interval GetSymbolicExpressionTreeIntervals(ISymbolicExpressionTree tree, IDataset dataset,
out IDictionary nodeIntervals, IEnumerable rows = null) {
var variableRanges = DatasetUtil.GetVariableRanges(dataset, rows);
return GetSymbolicExpressionTreeIntervals(tree, variableRanges, out nodeIntervals);
}
public Interval GetSymbolicExpressionTreeInterval(ISymbolicExpressionTree tree, IDictionary variableRanges) {
lock (syncRoot) {
EvaluatedSolutions++;
}
int instructionCount = 0;
var instructions = PrepareInterpreterState(tree, variableRanges);
var outputInterval = Evaluate(instructions, ref instructionCount);
// because of numerical errors the bounds might be incorrect
if (outputInterval.LowerBound <= outputInterval.UpperBound)
return outputInterval;
else
return new Interval(outputInterval.UpperBound, outputInterval.LowerBound);
}
public Interval GetSymbolicExpressionTreeIntervals(ISymbolicExpressionTree tree,
IDictionary variableRanges, out IDictionary nodeIntervals) {
lock (syncRoot) {
EvaluatedSolutions++;
}
int instructionCount = 0;
var intervals = new Dictionary();
var instructions = PrepareInterpreterState(tree, variableRanges);
var outputInterval = Evaluate(instructions, ref instructionCount, intervals);
// fix incorrect intervals if necessary (could occur because of numerical errors)
nodeIntervals = new Dictionary();
foreach (var kvp in intervals) {
var interval = kvp.Value;
if (interval.IsInfiniteOrUndefined || interval.LowerBound <= interval.UpperBound)
nodeIntervals.Add(kvp.Key, interval);
else
nodeIntervals.Add(kvp.Key, new Interval(interval.UpperBound, interval.LowerBound));
}
// because of numerical errors the bounds might be incorrect
if (outputInterval.IsInfiniteOrUndefined || outputInterval.LowerBound <= outputInterval.UpperBound)
return outputInterval;
else
return new Interval(outputInterval.UpperBound, outputInterval.LowerBound);
}
private static Instruction[] PrepareInterpreterState(ISymbolicExpressionTree tree, IDictionary variableRanges) {
if (variableRanges == null)
throw new ArgumentNullException("No variablew ranges are present!", nameof(variableRanges));
//Check if all variables used in the tree are present in the dataset
foreach (var variable in tree.IterateNodesPrefix().OfType().Select(n => n.VariableName).Distinct()) {
if (!variableRanges.ContainsKey(variable)) throw new InvalidOperationException($"No ranges for variable {variable} is present");
}
Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
foreach (Instruction instr in code.Where(i => i.opCode == OpCodes.Variable)) {
var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
instr.data = variableRanges[variableTreeNode.VariableName];
}
return code;
}
private Interval Evaluate(Instruction[] instructions, ref int instructionCounter, IDictionary nodeIntervals = null) {
Instruction currentInstr = instructions[instructionCounter];
//Use ref parameter, because the tree will be iterated through recursively from the left-side branch to the right side
//Update instructionCounter, whenever Evaluate is called
instructionCounter++;
Interval result = null;
switch (currentInstr.opCode) {
//Variables, Constants, ...
case OpCodes.Variable: {
var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
var weightInterval = new Interval(variableTreeNode.Weight, variableTreeNode.Weight);
var variableInterval = (Interval)currentInstr.data;
result = Interval.Multiply(variableInterval, weightInterval);
break;
}
case OpCodes.Constant: {
var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode;
result = new Interval(constTreeNode.Value, constTreeNode.Value);
break;
}
//Elementary arithmetic rules
case OpCodes.Add: {
result = Evaluate(instructions, ref instructionCounter, nodeIntervals);
for (int i = 1; i < currentInstr.nArguments; i++) {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Add(result, argumentInterval);
}
break;
}
case OpCodes.Sub: {
result = Evaluate(instructions, ref instructionCounter, nodeIntervals);
if (currentInstr.nArguments == 1)
result = Interval.Multiply(new Interval(-1, -1), result);
for (int i = 1; i < currentInstr.nArguments; i++) {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Subtract(result, argumentInterval);
}
break;
}
case OpCodes.Mul: {
result = Evaluate(instructions, ref instructionCounter, nodeIntervals);
for (int i = 1; i < currentInstr.nArguments; i++) {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Multiply(result, argumentInterval);
}
break;
}
case OpCodes.Div: {
result = Evaluate(instructions, ref instructionCounter, nodeIntervals);
if (currentInstr.nArguments == 1)
result = Interval.Divide(new Interval(1, 1), result);
for (int i = 1; i < currentInstr.nArguments; i++) {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Divide(result, argumentInterval);
}
break;
}
//Trigonometric functions
case OpCodes.Sin: {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Sine(argumentInterval);
break;
}
case OpCodes.Cos: {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Cosine(argumentInterval);
break;
}
case OpCodes.Tan: {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Tangens(argumentInterval);
break;
}
case OpCodes.Tanh: {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.HyperbolicTangent(argumentInterval);
break;
}
//Exponential functions
case OpCodes.Log: {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Logarithm(argumentInterval);
break;
}
case OpCodes.Exp: {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Exponential(argumentInterval);
break;
}
case OpCodes.Power: {
result = Evaluate(instructions, ref instructionCounter, nodeIntervals);
for (int i = 1; i < currentInstr.nArguments; i++) {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Power(result, argumentInterval);
}
break;
}
case OpCodes.Square: {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Square(argumentInterval);
break;
}
case OpCodes.Root: {
result = Evaluate(instructions, ref instructionCounter, nodeIntervals);
for (int i = 1; i < currentInstr.nArguments; i++) {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.Root(result, argumentInterval);
}
break;
}
case OpCodes.SquareRoot: {
var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals);
result = Interval.SquareRoot(argumentInterval);
break;
}
default:
throw new NotSupportedException($"The tree contains the unknown symbol {currentInstr.dynamicNode.Symbol}");
}
if (nodeIntervals != null)
nodeIntervals.Add(currentInstr.dynamicNode, result);
return result;
}
public static bool IsCompatible(ISymbolicExpressionTree tree) {
var containsUnknownSyumbol = (
from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
where
!(n.Symbol is StartSymbol) &&
!(n.Symbol is Addition) &&
!(n.Symbol is Subtraction) &&
!(n.Symbol is Multiplication) &&
!(n.Symbol is Division) &&
!(n.Symbol is Sine) &&
!(n.Symbol is Cosine) &&
!(n.Symbol is Tangent) &&
!(n.Symbol is Logarithm) &&
!(n.Symbol is Exponential) &&
!(n.Symbol is Power) &&
!(n.Symbol is Square) &&
!(n.Symbol is Root) &&
!(n.Symbol is SquareRoot) &&
!(n.Symbol is Problems.DataAnalysis.Symbolic.Variable) &&
!(n.Symbol is Constant)
select n).Any();
return !containsUnknownSyumbol;
}
}
}