#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.ConstantsOptimization {
public static class Util {
///
/// Extracts all variable information in a symbolic expression tree. The variable information is necessary to convert a tree in an AutoDiff term.
///
/// The tree referencing the variables.
/// The data for variables occuring in the tree.
public static List ExtractVariables(ISymbolicExpressionTree tree) {
if (tree == null) throw new ArgumentNullException("tree");
var variables = new HashSet();
foreach (var node in tree.IterateNodesPrefix().OfType()) {
string variableName = node.VariableName;
int lag = 0;
var laggedNode = node as ILaggedTreeNode;
if (laggedNode != null) lag = laggedNode.Lag;
var factorNode = node as FactorVariableTreeNode;
if (factorNode != null) {
foreach (var factorValue in factorNode.Symbol.GetVariableValues(variableName)) {
var data = new VariableData(variableName, factorValue, lag);
variables.Add(data);
}
} else {
var data = new VariableData(variableName, string.Empty, lag);
variables.Add(data);
}
}
return variables.ToList();
}
///
/// Extract the necessary date for constants optimization with AutoDiff
///
/// The dataset holding the data.
/// The variables for which the data from the dataset should be extracted.
/// The rows for which the data should be extracted.
/// A two-dimensiona double array containing the input data.
public static double[,] ExtractData(IDataset dataset, IEnumerable variables, IEnumerable rows) {
if (dataset == null) throw new ArgumentNullException("dataset");
if (variables == null) throw new ArgumentNullException("variables");
if (rows == null) throw new ArgumentNullException("rows");
var x = new double[rows.Count(), variables.Count()];
int col = 0;
foreach (var variable in variables) {
if (dataset.VariableHasType(variable.variableName)) {
IEnumerable values;
if (variable.lag == 0)
values = dataset.GetDoubleValues(variable.variableName, rows);
else
values = dataset.GetDoubleValues(variable.variableName, rows.Select(r => r + variable.lag));
int row = 0;
foreach (var value in values) {
x[row, col] = value;
row++;
}
} else if (dataset.VariableHasType(variable.variableName)) {
var values = dataset.GetStringValues(variable.variableName, rows);
int row = 0;
foreach (var value in values) {
x[row, col] = value == variable.variableValue ? 1 : 0; ;
row++;
}
} else throw new NotSupportedException("found a variable of unknown type");
col++;
}
return x;
}
///
/// Extracts all numeric nodes from a symbolic expression tree that can be optimized by the constants optimization
///
/// The tree from which the numeric nodes should be extracted.
/// A list containing all nodes with numeric coefficients.
public static List ExtractNumericNodes(ISymbolicExpressionTree tree) {
if (tree == null) throw new ArgumentNullException("tree");
var nodes = new List();
foreach (var node in tree.IterateNodesPrefix().OfType()) {
ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase;
FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode;
if (constantTreeNode != null) nodes.Add(constantTreeNode);
else if (variableTreeNodeBase != null) nodes.Add(variableTreeNodeBase);
else if (factorVarTreeNode != null) nodes.Add(variableTreeNodeBase);
else throw new NotSupportedException(string.Format("Terminal nodes of type {0} are not supported.", node.GetType().GetPrettyName()));
}
return nodes;
}
///
/// Extracts all numeric constants from a symbolic expression tree.
///
/// The tree from which the numeric constants should be extracted.
/// Flag to determine whether constants for linear scaling have to be added at the end.
/// α *f(x) + β, α = 1.0, β = 0.0
/// An array containing the numeric constants.
public static double[] ExtractConstants(ISymbolicExpressionTree tree, bool addLinearScalingConstants) {
if (tree == null) throw new ArgumentNullException("tree");
return ExtractConstants(tree.IterateNodesPrefix().OfType(), addLinearScalingConstants);
}
///
/// Extracts all numeric constants from a list of nodes.
///
/// The list of nodes for which the numeric constants should be extracted.
/// Flag to determine whether constants for linear scaling have to be added at the end.
/// α *f(x) + β, α = 1.0, β = 0.0
/// An array containing the numeric constants.
public static double[] ExtractConstants(IEnumerable nodes, bool addLinearScalingConstants) {
if (nodes == null) throw new ArgumentNullException("nodes");
var constants = new List();
foreach (var node in nodes) {
ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase;
FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode;
if (constantTreeNode != null)
constants.Add(constantTreeNode.Value);
else if (variableTreeNodeBase != null)
constants.Add(variableTreeNodeBase.Weight);
else if (factorVarTreeNode != null) {
for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
constants.Add(factorVarTreeNode.Weights[j]);
} else throw new NotSupportedException(string.Format("Nodes of type {0} are not supported.", node.GetType().GetPrettyName()));
}
if (addLinearScalingConstants) {
constants.Add(1.0);
constants.Add(0.0);
}
return constants.ToArray();
}
///
/// Sets the numeric constants of the nodes to the provided values.
///
/// The nodes whose constants should be updated.
/// The numeric constants which should be set.
public static void UpdateConstants(IEnumerable nodes, double[] constants) {
if (nodes == null) throw new ArgumentNullException("nodes");
if (constants == null) throw new ArgumentNullException("constants");
int i = 0;
foreach (var node in nodes) {
ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase;
FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode;
if (constantTreeNode != null)
constantTreeNode.Value = constants[i++];
else if (variableTreeNodeBase != null)
variableTreeNodeBase.Weight = constants[i++];
else if (factorVarTreeNode != null) {
for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
factorVarTreeNode.Weights[j] = constants[i++];
} else throw new NotSupportedException(string.Format("Terminal nodes of type {0} are not supported.", node.GetType().GetPrettyName()));
}
}
///
/// Sets all numeric constants of the symbolic expression tree to the provided values.
///
/// The tree for which the numeric constants should be updated.
/// The numeric constants which should be set.
public static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants) {
if (tree == null) throw new ArgumentNullException("tree");
if (constants == null) throw new ArgumentNullException("constants");
UpdateConstants(tree.IterateNodesPrefix().OfType(), constants);
}
}
}