#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections; using System.Collections.Generic; using System.Drawing; using System.Globalization; using System.Linq; using System.Threading; using System.Threading.Tasks; using System.Windows.Forms; using System.Windows.Forms.DataVisualization.Charting; using HeuristicLab.Common; using HeuristicLab.MainForm.WindowsForms; using HeuristicLab.Visualization.ChartControlsExtensions; namespace HeuristicLab.Problems.DataAnalysis.Views { public partial class PartialDependencePlot : UserControl, IPartialDependencePlot { private ModifiableDataset sharedFixedVariables; // used for syncronising variable values between charts private ModifiableDataset internalDataset; // holds the x values for each point drawn private CancellationTokenSource cancelCurrentRecalculateSource; private readonly List solutions; private readonly Dictionary seriesCache; private readonly Dictionary ciSeriesCache; private readonly ToolStripMenuItem configToolStripMenuItem; private readonly PartialDependencePlotConfigurationDialog configurationDialog; #region Properties public string XAxisTitle { get { return chart.ChartAreas[0].AxisX.Title; } set { chart.ChartAreas[0].AxisX.Title = value; } } public string YAxisTitle { get { return chart.ChartAreas[0].AxisY.Title; } set { chart.ChartAreas[0].AxisY.Title = value; } } public bool ShowLegend { get { return chart.Legends[0].Enabled; } set { chart.Legends[0].Enabled = value; } } public bool ShowCursor { get { return chart.Annotations[0].Visible; } set { chart.Annotations[0].Visible = value; if (!value) chart.Titles[0].Text = string.Empty; } } public bool ShowConfigButton { get { return configurationButton.Visible; } set { configurationButton.Visible = value; } } private int xAxisTicks = 5; public int XAxisTicks { get { return xAxisTicks; } set { if (value != xAxisTicks) { xAxisTicks = value; SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax); RecalculateInternalDataset(); } } } private double? fixedXAxisMin; public double? FixedXAxisMin { get { return fixedXAxisMin; } set { if ((value.HasValue && fixedXAxisMin.HasValue && !value.Value.IsAlmost(fixedXAxisMin.Value)) || (value.HasValue != fixedXAxisMin.HasValue)) { fixedXAxisMin = value; SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax); RecalculateInternalDataset(); // set the vertical line position if (VerticalLineAnnotation.X <= fixedXAxisMin) { var axisX = chart.ChartAreas[0].AxisX; var step = (axisX.Maximum - axisX.Minimum) / drawingSteps; VerticalLineAnnotation.X = axisX.Minimum + step; } } } } private double? fixedXAxisMax; public double? FixedXAxisMax { get { return fixedXAxisMax; } set { if ((value.HasValue && fixedXAxisMax.HasValue && !value.Value.IsAlmost(fixedXAxisMax.Value)) || (value.HasValue != fixedXAxisMax.HasValue)) { fixedXAxisMax = value; SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax); RecalculateInternalDataset(); // set the vertical line position if (VerticalLineAnnotation.X >= fixedXAxisMax) { var axisX = chart.ChartAreas[0].AxisX; var step = (axisX.Maximum - axisX.Minimum) / drawingSteps; VerticalLineAnnotation.X = axisX.Maximum - step; } } } } private int yAxisTicks = 5; public int YAxisTicks { get { return yAxisTicks; } set { if (value != yAxisTicks) { yAxisTicks = value; SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax); RecalculateInternalDataset(); } } } private double? fixedYAxisMin; public double? FixedYAxisMin { get { return fixedYAxisMin; } set { if ((value.HasValue && fixedYAxisMin.HasValue && !value.Value.IsAlmost(fixedYAxisMin.Value)) || (value.HasValue != fixedYAxisMin.HasValue)) { fixedYAxisMin = value; SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax); } } } private double? fixedYAxisMax; public double? FixedYAxisMax { get { return fixedYAxisMax; } set { if ((value.HasValue && fixedYAxisMax.HasValue && !value.Value.IsAlmost(fixedYAxisMax.Value)) || (value.HasValue != fixedYAxisMax.HasValue)) { fixedYAxisMax = value; SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax); } } } private double trainingMin = -1; private double trainingMax = 1; private int drawingSteps = 1000; public int DrawingSteps { get { return drawingSteps; } set { if (value != drawingSteps) { drawingSteps = value; RecalculateInternalDataset(); ResizeAllSeriesData(); } } } private string freeVariable; public string FreeVariable { get { return freeVariable; } set { if (value == freeVariable) return; if (solutions.Any(s => !s.ProblemData.Dataset.DoubleVariables.Contains(value))) { throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions."); } freeVariable = value; RecalculateInternalDataset(); } } private double yMin; public double YMin { get { return yMin; } } private double yMax; public double YMax { get { return yMax; } } public bool IsZoomed { get { return chart.ChartAreas[0].AxisX.ScaleView.IsZoomed; } } private VerticalLineAnnotation VerticalLineAnnotation { get { return (VerticalLineAnnotation)chart.Annotations.SingleOrDefault(x => x is VerticalLineAnnotation); } } internal ElementPosition InnerPlotPosition { get { return chart.ChartAreas[0].InnerPlotPosition; } } #endregion public event EventHandler ChartPostPaint; public PartialDependencePlot() { InitializeComponent(); solutions = new List(); seriesCache = new Dictionary(); ciSeriesCache = new Dictionary(); // Configure axis chart.CustomizeAllChartAreas(); chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = false; chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = false; chart.ChartAreas[0].Axes.ToList().ForEach(x => { x.ScaleView.Zoomable = false; }); configToolStripMenuItem = new ToolStripMenuItem("Configuration"); configToolStripMenuItem.Click += config_Click; chart.ContextMenuStrip.Items.Add(new ToolStripSeparator()); chart.ContextMenuStrip.Items.Add(configToolStripMenuItem); configurationDialog = new PartialDependencePlotConfigurationDialog(this); Disposed += Control_Disposed; } private void Control_Disposed(object sender, EventArgs e) { if (cancelCurrentRecalculateSource != null) cancelCurrentRecalculateSource.Cancel(); } public void Configure(IEnumerable solutions, ModifiableDataset sharedFixedVariables, string freeVariable, int drawingSteps, bool initializeAxisRanges = true) { if (!SolutionsCompatible(solutions)) throw new ArgumentException("Solutions are not compatible with the problem data."); this.freeVariable = freeVariable; this.drawingSteps = drawingSteps; this.solutions.Clear(); this.solutions.AddRange(solutions); // add an event such that whenever a value is changed in the shared dataset, // this change is reflected in the internal dataset (where the value becomes a whole column) if (this.sharedFixedVariables != null) { this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged; this.sharedFixedVariables.Reset -= sharedFixedVariables_Reset; } this.sharedFixedVariables = sharedFixedVariables; this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged; this.sharedFixedVariables.Reset += sharedFixedVariables_Reset; RecalculateTrainingLimits(initializeAxisRanges); RecalculateInternalDataset(); chart.Series.Clear(); seriesCache.Clear(); ciSeriesCache.Clear(); foreach (var solution in this.solutions) { var series = CreateSeries(solution); seriesCache.Add(solution, series.Item1); if (series.Item2 != null) ciSeriesCache.Add(solution, series.Item2); } // Set cursor and x-axis // Make sure to allow a small offset to be able to distinguish the vertical line annotation from the axis var defaultValue = sharedFixedVariables.GetDoubleValue(freeVariable, 0); var step = (trainingMax - trainingMin) / drawingSteps; var minimum = chart.ChartAreas[0].AxisX.Minimum; var maximum = chart.ChartAreas[0].AxisX.Maximum; if (defaultValue <= minimum) VerticalLineAnnotation.X = minimum + step; else if (defaultValue >= maximum) VerticalLineAnnotation.X = maximum - step; else VerticalLineAnnotation.X = defaultValue; if (ShowCursor) chart.Titles[0].Text = FreeVariable + " : " + defaultValue.ToString("G5", CultureInfo.CurrentCulture); ResizeAllSeriesData(); OrderAndColorSeries(); } public async Task RecalculateAsync(bool updateOnFinish = true, bool resetYAxis = true) { if (IsDisposed || sharedFixedVariables == null || !solutions.Any() || string.IsNullOrEmpty(freeVariable) || trainingMin > trainingMax || drawingSteps == 0) return; calculationPendingTimer.Start(); // cancel previous recalculate call if (cancelCurrentRecalculateSource != null) cancelCurrentRecalculateSource.Cancel(); cancelCurrentRecalculateSource = new CancellationTokenSource(); var cancellationToken = cancelCurrentRecalculateSource.Token; // Update series try { var limits = await UpdateAllSeriesDataAsync(cancellationToken); chart.Invalidate(); yMin = limits.Lower; yMax = limits.Upper; // Set y-axis if (resetYAxis) SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax); UpdateOutOfTrainingRangeStripLines(); calculationPendingTimer.Stop(); calculationPendingLabel.Visible = false; if (updateOnFinish) Update(); } catch (OperationCanceledException) { } catch (AggregateException ae) { if (!ae.InnerExceptions.Any(e => e is OperationCanceledException)) throw; } } public void UpdateTitlePosition() { var title = chart.Titles[0]; var plotArea = InnerPlotPosition; title.Visible = plotArea.Width != 0; title.Position.X = plotArea.X + (plotArea.Width / 2); } private static void SetupAxis(EnhancedChart chart, Axis axis, double minValue, double maxValue, int ticks, double? fixedAxisMin, double? fixedAxisMax) { //guard if only one distinct value is present if (minValue.IsAlmost(maxValue)) { minValue = minValue - 0.5; maxValue = minValue + 0.5; } double axisMin, axisMax, axisInterval; ChartUtil.CalculateAxisInterval(minValue, maxValue, ticks, out axisMin, out axisMax, out axisInterval); axis.Minimum = fixedAxisMin ?? axisMin; axis.Maximum = fixedAxisMax ?? axisMax; axis.Interval = (axis.Maximum - axis.Minimum) / ticks; chart.ChartAreas[0].RecalculateAxesScale(); } private void RecalculateTrainingLimits(bool initializeAxisRanges) { trainingMin = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Where(x => !double.IsNaN(x)).Min()).Max(); trainingMax = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Where(x => !double.IsNaN(x)).Max()).Min(); if (initializeAxisRanges) { double xmin, xmax, xinterval; //guard if only one distinct value is present if (trainingMin.IsAlmost(trainingMax)) ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMax + 0.5, XAxisTicks, out xmin, out xmax, out xinterval); else ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval); FixedXAxisMin = xmin; FixedXAxisMax = xmax; } } private void RecalculateInternalDataset() { if (sharedFixedVariables == null) return; // we expand the range in order to get nice tick intervals on the x axis double xmin, xmax, xinterval; //guard if only one distinct value is present if (trainingMin.IsAlmost(trainingMax)) ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMin + 0.5, XAxisTicks, out xmin, out xmax, out xinterval); else ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval); if (FixedXAxisMin.HasValue) xmin = FixedXAxisMin.Value; if (FixedXAxisMax.HasValue) xmax = FixedXAxisMax.Value; double step = (xmax - xmin) / drawingSteps; var xvalues = new List(); for (int i = 0; i < drawingSteps; i++) xvalues.Add(xmin + i * step); if (sharedFixedVariables == null) return; var variables = sharedFixedVariables.VariableNames.ToList(); var values = new List(); foreach (var varName in variables) { if (varName == FreeVariable) { values.Add(xvalues); } else if (sharedFixedVariables.VariableHasType(varName)) { values.Add(Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(varName, 0), xvalues.Count).ToList()); } else if (sharedFixedVariables.VariableHasType(varName)) { values.Add(Enumerable.Repeat(sharedFixedVariables.GetStringValue(varName, 0), xvalues.Count).ToList()); } } internalDataset = new ModifiableDataset(variables, values); } private Tuple CreateSeries(IRegressionSolution solution) { var series = new Series { ChartType = SeriesChartType.Line, Name = solution.ProblemData.TargetVariable + " " + solutions.IndexOf(solution) }; series.LegendText = series.Name; var confidenceBoundSolution = solution as IConfidenceRegressionSolution; Series confidenceIntervalSeries = null; if (confidenceBoundSolution != null) { confidenceIntervalSeries = new Series { ChartType = SeriesChartType.Range, YValuesPerPoint = 2, Name = "95% Conf. Interval " + series.Name, IsVisibleInLegend = false }; } return Tuple.Create(series, confidenceIntervalSeries); } private void OrderAndColorSeries() { chart.SuspendRepaint(); chart.Series.Clear(); // Add mean series for applying palette colors foreach (var solution in solutions) { chart.Series.Add(seriesCache[solution]); } chart.Palette = ChartColorPalette.BrightPastel; chart.ApplyPaletteColors(); chart.Palette = ChartColorPalette.None; // Add confidence interval series before its coresponding series for correct z index foreach (var solution in solutions) { Series ciSeries; if (ciSeriesCache.TryGetValue(solution, out ciSeries)) { var series = seriesCache[solution]; ciSeries.Color = Color.FromArgb(40, series.Color); int idx = chart.Series.IndexOf(seriesCache[solution]); chart.Series.Insert(idx, ciSeries); } } chart.ResumeRepaint(true); } private async Task UpdateAllSeriesDataAsync(CancellationToken cancellationToken) { var updateTasks = solutions.Select(solution => UpdateSeriesDataAsync(solution, cancellationToken)); double min = double.MaxValue, max = double.MinValue; foreach (var update in updateTasks) { var limit = await update; if (limit.Lower < min) min = limit.Lower; if (limit.Upper > max) max = limit.Upper; } return new DoubleLimit(min, max); } private Task UpdateSeriesDataAsync(IRegressionSolution solution, CancellationToken cancellationToken) { return Task.Run(() => { var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList(); var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList(); double min = double.MaxValue, max = double.MinValue; var series = seriesCache[solution]; for (int i = 0; i < xvalues.Count; i++) { series.Points[i].SetValueXY(xvalues[i], yvalues[i]); if (yvalues[i] < min) min = yvalues[i]; if (yvalues[i] > max) max = yvalues[i]; } cancellationToken.ThrowIfCancellationRequested(); var confidenceBoundSolution = solution as IConfidenceRegressionSolution; if (confidenceBoundSolution != null) { var confidenceIntervalSeries = ciSeriesCache[solution]; var variances = confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList(); for (int i = 0; i < xvalues.Count; i++) { var lower = yvalues[i] - 1.96 * Math.Sqrt(variances[i]); var upper = yvalues[i] + 1.96 * Math.Sqrt(variances[i]); confidenceIntervalSeries.Points[i].SetValueXY(xvalues[i], lower, upper); if (lower < min) min = lower; if (upper > max) max = upper; } } cancellationToken.ThrowIfCancellationRequested(); return new DoubleLimit(min, max); }, cancellationToken); } private void ResizeAllSeriesData() { if (internalDataset == null) return; var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList(); foreach (var solution in solutions) ResizeSeriesData(solution, xvalues); } private void ResizeSeriesData(IRegressionSolution solution, IList xvalues = null) { if (xvalues == null) xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList(); var series = seriesCache[solution]; series.Points.SuspendUpdates(); series.Points.Clear(); for (int i = 0; i < xvalues.Count; i++) series.Points.Add(new DataPoint(xvalues[i], 0.0)); series.Points.ResumeUpdates(); Series confidenceIntervalSeries; if (ciSeriesCache.TryGetValue(solution, out confidenceIntervalSeries)) { confidenceIntervalSeries.Points.SuspendUpdates(); confidenceIntervalSeries.Points.Clear(); for (int i = 0; i < xvalues.Count; i++) confidenceIntervalSeries.Points.Add(new DataPoint(xvalues[i], new[] { -1.0, 1.0 })); confidenceIntervalSeries.Points.ResumeUpdates(); } } public async Task AddSolutionAsync(IRegressionSolution solution) { if (!SolutionsCompatible(solutions.Concat(new[] { solution }))) throw new ArgumentException("The solution is not compatible with the problem data."); if (solutions.Contains(solution)) return; solutions.Add(solution); RecalculateTrainingLimits(true); var series = CreateSeries(solution); seriesCache.Add(solution, series.Item1); if (series.Item2 != null) ciSeriesCache.Add(solution, series.Item2); ResizeSeriesData(solution); OrderAndColorSeries(); await RecalculateAsync(); var args = new EventArgs(solution); OnSolutionAdded(this, args); } public async Task RemoveSolutionAsync(IRegressionSolution solution) { if (!solutions.Remove(solution)) return; RecalculateTrainingLimits(true); seriesCache.Remove(solution); ciSeriesCache.Remove(solution); await RecalculateAsync(); var args = new EventArgs(solution); OnSolutionRemoved(this, args); } private static bool SolutionsCompatible(IEnumerable solutions) { var refSolution = solutions.First(); var refSolVars = refSolution.ProblemData.Dataset.VariableNames; foreach (var solution in solutions.Skip(1)) { var variables1 = solution.ProblemData.Dataset.VariableNames; if (!variables1.All(refSolVars.Contains)) return false; foreach (var factorVar in variables1.Where(solution.ProblemData.Dataset.VariableHasType)) { var distinctVals = refSolution.ProblemData.Dataset.GetStringValues(factorVar).Distinct(); if (solution.ProblemData.Dataset.GetStringValues(factorVar).Any(val => !distinctVals.Contains(val))) return false; } } return true; } private void UpdateOutOfTrainingRangeStripLines() { var axisX = chart.ChartAreas[0].AxisX; var lowerStripLine = axisX.StripLines[0]; var upperStripLine = axisX.StripLines[1]; lowerStripLine.IntervalOffset = axisX.Minimum; lowerStripLine.StripWidth = Math.Abs(trainingMin - axisX.Minimum); upperStripLine.IntervalOffset = trainingMax; upperStripLine.StripWidth = Math.Abs(axisX.Maximum - trainingMax); } #region Events public event EventHandler> SolutionAdded; public void OnSolutionAdded(object sender, EventArgs args) { var added = SolutionAdded; if (added == null) return; added(sender, args); } public event EventHandler> SolutionRemoved; public void OnSolutionRemoved(object sender, EventArgs args) { var removed = SolutionRemoved; if (removed == null) return; removed(sender, args); } public event EventHandler VariableValueChanged; public void OnVariableValueChanged(object sender, EventArgs args) { var changed = VariableValueChanged; if (changed == null) return; changed(sender, args); } public event EventHandler ZoomChanged; public void OnZoomChanged(object sender, EventArgs args) { var changed = ZoomChanged; if (changed == null) return; changed(sender, args); } private void sharedFixedVariables_ItemChanged(object o, EventArgs e) { if (o != sharedFixedVariables) return; var variables = sharedFixedVariables.VariableNames.ToList(); var rowIndex = e.Value; var columnIndex = e.Value2; var variableName = variables[columnIndex]; if (variableName == FreeVariable) { return; } if (internalDataset.VariableHasType(variableName)) { var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex); var values = new List(Enumerable.Repeat(v, internalDataset.Rows)); internalDataset.ReplaceVariable(variableName, values); } else if (internalDataset.VariableHasType(variableName)) { var v = sharedFixedVariables.GetStringValue(variableName, rowIndex); var values = new List(Enumerable.Repeat(v, internalDataset.Rows)); internalDataset.ReplaceVariable(variableName, values); } else { // unsupported type throw new NotSupportedException(); } } private void sharedFixedVariables_Reset(object sender, EventArgs e) { var newValue = sharedFixedVariables.GetDoubleValue(FreeVariable, 0); VerticalLineAnnotation.X = newValue; UpdateCursor(); // triggers update of InternalDataset } private void chart_AnnotationPositionChanging(object sender, AnnotationPositionChangingEventArgs e) { var step = (trainingMax - trainingMin) / drawingSteps; double newLocation = step * (long)Math.Round(e.NewLocationX / step); var axisX = chart.ChartAreas[0].AxisX; if (newLocation >= axisX.Maximum) newLocation = axisX.Maximum - step; if (newLocation <= axisX.Minimum) newLocation = axisX.Minimum + step; e.NewLocationX = newLocation; UpdateCursor(); } private void chart_AnnotationPositionChanged(object sender, EventArgs e) { UpdateCursor(); } private void UpdateCursor() { var x = VerticalLineAnnotation.X; if (!sharedFixedVariables.GetDoubleValue(FreeVariable, 0).IsAlmost(x)) sharedFixedVariables.SetVariableValue(x, FreeVariable, 0); if (ShowCursor) { chart.Titles[0].Text = FreeVariable + " : " + x.ToString("G5", CultureInfo.CurrentCulture); chart.Update(); } OnVariableValueChanged(this, EventArgs.Empty); } private void chart_MouseMove(object sender, MouseEventArgs e) { bool hitCursor = chart.HitTest(e.X, e.Y).ChartElementType == ChartElementType.Annotation; chart.Cursor = hitCursor ? Cursors.VSplit : Cursors.Default; } private async void chart_DragDrop(object sender, DragEventArgs e) { var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat); if (data != null) { var solution = data as IRegressionSolution; if (!solutions.Contains(solution)) await AddSolutionAsync(solution); } } private void chart_DragEnter(object sender, DragEventArgs e) { if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return; e.Effect = DragDropEffects.None; var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat); var regressionSolution = data as IRegressionSolution; if (regressionSolution != null) { e.Effect = DragDropEffects.Copy; } } private void calculationPendingTimer_Tick(object sender, EventArgs e) { calculationPendingLabel.Visible = true; Update(); } private void config_Click(object sender, EventArgs e) { configurationDialog.ShowDialog(this); OnZoomChanged(this, EventArgs.Empty); } private void chart_SelectionRangeChanged(object sender, CursorEventArgs e) { OnZoomChanged(this, EventArgs.Empty); } private void chart_Resize(object sender, EventArgs e) { UpdateTitlePosition(); } private void chart_PostPaint(object sender, ChartPaintEventArgs e) { if (ChartPostPaint != null) ChartPostPaint(this, EventArgs.Empty); } #endregion } }