#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using System.Windows.Forms; using HeuristicLab.Data; using HeuristicLab.MainForm; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Views; namespace HeuristicLab.Algorithms.DataAnalysis.Views { [View("Estimated Values")] [Content(typeof(IConfidenceRegressionSolution), false)] public partial class ConfidenceRegressionSolutionEstimatedValuesView : RegressionSolutionEstimatedValuesView { private const string ESTIMATEDVARIANCES_SERIES_NAME = "Estimated Variances (all)"; private const string ESTIMATEDVARIANCES_TRAINING_SERIES_NAME = "Estimated Variances (training)"; private const string ESTIMATEDVARIANCES_TEST_SERIES_NAME = "Estimated Variances (test)"; public new IConfidenceRegressionSolution Content { get { return (IConfidenceRegressionSolution)base.Content; } set { base.Content = value; } } public ConfidenceRegressionSolutionEstimatedValuesView() : base() { InitializeComponent(); } protected override StringMatrix CreateValueMatrix() { var matrix = base.CreateValueMatrix(); var columnNames = matrix.ColumnNames.Concat(new[] { ESTIMATEDVARIANCES_SERIES_NAME, ESTIMATEDVARIANCES_TRAINING_SERIES_NAME, ESTIMATEDVARIANCES_TEST_SERIES_NAME }).ToList(); ((IStringConvertibleMatrix)matrix).Columns += 3; matrix.ColumnNames = columnNames; var trainingRows = Content.ProblemData.TrainingIndices; var testRows = Content.ProblemData.TestIndices; var estimated_var = Content.EstimatedVariances.GetEnumerator(); var estimated_var_training = Content.GetEstimatedVariances(trainingRows).GetEnumerator(); var estimated_var_test = Content.GetEstimatedVariances(testRows).GetEnumerator(); foreach (var row in Enumerable.Range(0, Content.ProblemData.Dataset.Rows)) { estimated_var.MoveNext(); matrix[row, 8] = estimated_var.Current.ToString(); } foreach (var row in Content.ProblemData.TrainingIndices) { estimated_var_training.MoveNext(); matrix[row, 9] = estimated_var_training.Current.ToString(); } foreach (var row in Content.ProblemData.TestIndices) { estimated_var_test.MoveNext(); matrix[row, 10] = estimated_var_test.Current.ToString(); } return matrix; } } }