using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using static HeuristicLab.Problems.DataAnalysis.Symbolic.BatchOperations; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [Item("SymbolicDataAnalysisExpressionTreeBatchInterpreter", "An interpreter that uses batching and vectorization techniques to achieve faster performance.")] [StorableClass] public class SymbolicDataAnalysisExpressionTreeBatchInterpreter : ParameterizedNamedItem, ISymbolicDataAnalysisExpressionTreeInterpreter { private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions"; #region parameters public IFixedValueParameter EvaluatedSolutionsParameter { get { return (IFixedValueParameter)Parameters[EvaluatedSolutionsParameterName]; } } #endregion #region properties public int EvaluatedSolutions { get { return EvaluatedSolutionsParameter.Value.Value; } set { EvaluatedSolutionsParameter.Value.Value = value; } } #endregion public void ClearState() { } public SymbolicDataAnalysisExpressionTreeBatchInterpreter() { Parameters.Add(new FixedValueParameter(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0))); } [StorableConstructor] protected SymbolicDataAnalysisExpressionTreeBatchInterpreter(bool deserializing) : base(deserializing) { } protected SymbolicDataAnalysisExpressionTreeBatchInterpreter(SymbolicDataAnalysisExpressionTreeBatchInterpreter original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionTreeBatchInterpreter(this, cloner); } private void LoadData(BatchInstruction instr, int[] rows, int rowIndex, int batchSize) { for (int i = 0; i < batchSize; ++i) { var row = rows[rowIndex] + i; instr.buf[i] = instr.weight * instr.data[row]; } } private void Evaluate(BatchInstruction[] code, int[] rows, int rowIndex, int batchSize) { for (int i = code.Length - 1; i >= 0; --i) { var instr = code[i]; var c = instr.childIndex; var n = instr.narg; switch (instr.opcode) { case OpCodes.Variable: { LoadData(instr, rows, rowIndex, batchSize); break; } case OpCodes.Add: { Load(instr.buf, code[c].buf); for (int j = 1; j < n; ++j) { Add(instr.buf, code[c + j].buf); } break; } case OpCodes.Sub: { if (n == 1) { Neg(instr.buf, code[c].buf); } else { Load(instr.buf, code[c].buf); for (int j = 1; j < n; ++j) { Sub(instr.buf, code[c + j].buf); } } break; } case OpCodes.Mul: { Load(instr.buf, code[c].buf); for (int j = 1; j < n; ++j) { Mul(instr.buf, code[c + j].buf); } break; } case OpCodes.Div: { if (n == 1) { Inv(instr.buf, code[c].buf); } else { Load(instr.buf, code[c].buf); for (int j = 1; j < n; ++j) { Div(instr.buf, code[c + j].buf); } } break; } case OpCodes.Square: { Square(instr.buf, code[c].buf); break; } case OpCodes.Root: { Load(instr.buf, code[c].buf); Root(instr.buf, code[c + 1].buf); break; } case OpCodes.SquareRoot: { Sqrt(instr.buf, code[c].buf); break; } case OpCodes.Cube: { Cube(instr.buf, code[c].buf); break; } case OpCodes.CubeRoot: { CubeRoot(instr.buf, code[c].buf); break; } case OpCodes.Power: { Load(instr.buf, code[c].buf); Pow(instr.buf, code[c + 1].buf); break; } case OpCodes.Exp: { Exp(instr.buf, code[c].buf); break; } case OpCodes.Log: { Log(instr.buf, code[c].buf); break; } case OpCodes.Sin: { Sin(instr.buf, code[c].buf); break; } case OpCodes.Cos: { Cos(instr.buf, code[c].buf); break; } case OpCodes.Tan: { Tan(instr.buf, code[c].buf); break; } case OpCodes.Absolute: { Absolute(instr.buf, code[c].buf); break; } case OpCodes.AnalyticQuotient: { Load(instr.buf, code[c].buf); AnalyticQuotient(instr.buf, code[c + 1].buf); break; } } } } private readonly object syncRoot = new object(); [ThreadStatic] private Dictionary cachedData; [ThreadStatic] private IDataset dataset; private void InitCache(IDataset dataset) { this.dataset = dataset; cachedData = new Dictionary(); foreach (var v in dataset.DoubleVariables) { cachedData[v] = dataset.GetDoubleValues(v).ToArray(); } } public void InitializeState() { cachedData = null; dataset = null; EvaluatedSolutions = 0; } private double[] GetValues(ISymbolicExpressionTree tree, IDataset dataset, int[] rows) { if (cachedData == null || this.dataset != dataset) { InitCache(dataset); } var code = Compile(tree, dataset, OpCodes.MapSymbolToOpCode); var remainingRows = rows.Length % BATCHSIZE; var roundedTotal = rows.Length - remainingRows; var result = new double[rows.Length]; for (int rowIndex = 0; rowIndex < roundedTotal; rowIndex += BATCHSIZE) { Evaluate(code, rows, rowIndex, BATCHSIZE); Array.Copy(code[0].buf, 0, result, rowIndex, BATCHSIZE); } if (remainingRows > 0) { Evaluate(code, rows, roundedTotal, remainingRows); Array.Copy(code[0].buf, 0, result, roundedTotal, remainingRows); } // when evaluation took place without any error, we can increment the counter lock (syncRoot) { EvaluatedSolutions++; } return result; } public IEnumerable GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, int[] rows) { return GetValues(tree, dataset, rows); } public IEnumerable GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable rows) { return GetSymbolicExpressionTreeValues(tree, dataset, rows.ToArray()); } private BatchInstruction[] Compile(ISymbolicExpressionTree tree, IDataset dataset, Func opCodeMapper) { var root = tree.Root.GetSubtree(0).GetSubtree(0); var code = new BatchInstruction[root.GetLength()]; if (root.SubtreeCount > ushort.MaxValue) throw new ArgumentException("Number of subtrees is too big (>65.535)"); int c = 1, i = 0; foreach (var node in root.IterateNodesBreadth()) { if (node.SubtreeCount > ushort.MaxValue) throw new ArgumentException("Number of subtrees is too big (>65.535)"); code[i] = new BatchInstruction { opcode = opCodeMapper(node), narg = (ushort)node.SubtreeCount, buf = new double[BATCHSIZE], childIndex = c }; if (node is VariableTreeNode variable) { code[i].weight = variable.Weight; if (cachedData.ContainsKey(variable.VariableName)) { code[i].data = cachedData[variable.VariableName]; } else { code[i].data = dataset.GetReadOnlyDoubleValues(variable.VariableName).ToArray(); cachedData[variable.VariableName] = code[i].data; } } else if (node is ConstantTreeNode constant) { code[i].value = constant.Value; for (int j = 0; j < BATCHSIZE; ++j) code[i].buf[j] = code[i].value; } c += node.SubtreeCount; ++i; } return code; } } }