#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
public static class SymbolicExpressionTreeHash {
private static readonly Addition add = new Addition();
private static readonly Subtraction sub = new Subtraction();
private static readonly Multiplication mul = new Multiplication();
private static readonly Division div = new Division();
private static readonly Logarithm log = new Logarithm();
private static readonly Exponential exp = new Exponential();
private static readonly Sine sin = new Sine();
private static readonly Cosine cos = new Cosine();
private static readonly Constant constant = new Constant();
private static readonly ISymbolicExpressionTreeNodeComparer comparer = new SymbolicExpressionTreeNodeComparer();
public static ulong ComputeHash(this ISymbolicExpressionTree tree) {
return ComputeHash(tree.Root.GetSubtree(0).GetSubtree(0));
}
public static double ComputeSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool simplify = false) {
return ComputeSimilarity(t1.Root.GetSubtree(0).GetSubtree(0), t2.Root.GetSubtree(0).GetSubtree(0), simplify);
}
public static double ComputeSimilarity(ISymbolicExpressionTreeNode t1, ISymbolicExpressionTreeNode t2, bool simplify = false) {
HashNode[] lhs;
HashNode[] rhs;
ulong hashFunction(byte[] input) => HashUtil.DJBHash(input);
if (simplify) {
lhs = t1.MakeNodes().Simplify(hashFunction);
rhs = t2.MakeNodes().Simplify(hashFunction);
} else {
lhs = t1.MakeNodes().Sort(hashFunction); // sort calculates hash values
rhs = t2.MakeNodes().Sort(hashFunction);
}
var lh = lhs.Select(x => x.CalculatedHashValue).ToArray();
var rh = rhs.Select(x => x.CalculatedHashValue).ToArray();
Array.Sort(lh);
Array.Sort(rh);
return ComputeSimilarity(lh, rh);
}
// this will only work if lh and rh are sorted
private static double ComputeSimilarity(ulong[] lh, ulong[] rh) {
double count = 0;
for (int i = 0, j = 0; i < lh.Length && j < rh.Length;) {
var h1 = lh[i];
var h2 = rh[j];
if (h1 == h2) {
++count;
++i;
++j;
} else if (h1 < h2) {
++i;
} else if (h1 > h2) {
++j;
}
}
return 2d * count / (lh.Length + rh.Length);
}
public static double ComputeAverageSimilarity(IList trees, bool simplify = false, bool strict = false) {
var total = (double)trees.Count * (trees.Count - 1) / 2;
double avg = 0;
var hashes = new ulong[trees.Count][];
// build hash arrays
for (int i = 0; i < trees.Count; ++i) {
var nodes = trees[i].MakeNodes(strict);
hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray();
Array.Sort(hashes[i]);
}
// compute similarity matrix
for (int i = 0; i < trees.Count - 1; ++i) {
for (int j = i + 1; j < trees.Count; ++j) {
avg += ComputeSimilarity(hashes[i], hashes[j]);
}
}
return avg / total;
}
public static double[,] ComputeSimilarityMatrix(IList trees, bool simplify = false, bool strict = false) {
var sim = new double[trees.Count, trees.Count];
var hashes = new ulong[trees.Count][];
// build hash arrays
for (int i = 0; i < trees.Count; ++i) {
var nodes = trees[i].MakeNodes(strict);
hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray();
Array.Sort(hashes[i]);
}
// compute similarity matrix
for (int i = 0; i < trees.Count - 1; ++i) {
for (int j = i + 1; j < trees.Count; ++j) {
sim[i, j] = sim[j, i] = ComputeSimilarity(hashes[i], hashes[j]);
}
}
return sim;
}
public static ulong ComputeHash(this ISymbolicExpressionTreeNode treeNode, bool strict = false) {
ulong hashFunction(byte[] input) => HashUtil.JSHash(input);
var hashNodes = treeNode.MakeNodes(strict);
var simplified = hashNodes.Simplify(hashFunction);
return simplified.Last().CalculatedHashValue;
}
public static HashNode ToHashNode(this ISymbolicExpressionTreeNode node, bool strict = false) {
var symbol = node.Symbol;
var name = symbol.Name;
if (node is ConstantTreeNode constantNode) {
name = strict ? constantNode.Value.ToString() : symbol.Name;
} else if (node is VariableTreeNode variableNode) {
name = strict ? variableNode.Weight.ToString() + variableNode.VariableName : variableNode.VariableName;
}
var hash = (ulong)name.GetHashCode();
var hashNode = new HashNode(comparer) {
Data = node,
Arity = node.SubtreeCount,
Size = node.SubtreeCount,
IsCommutative = node.Symbol is Addition || node.Symbol is Multiplication,
Enabled = true,
HashValue = hash,
CalculatedHashValue = hash
};
if (symbol is Addition) {
hashNode.Simplify = SimplifyAddition;
} else if (symbol is Multiplication) {
hashNode.Simplify = SimplifyMultiplication;
} else if (symbol is Division) {
hashNode.Simplify = SimplifyDivision;
} else if (symbol is Logarithm || symbol is Exponential || symbol is Sine || symbol is Cosine) {
hashNode.Simplify = SimplifyUnaryNode;
} else if (symbol is Subtraction) {
hashNode.Simplify = SimplifyBinaryNode;
}
return hashNode;
}
public static HashNode[] MakeNodes(this ISymbolicExpressionTree tree, bool strict = false) {
return MakeNodes(tree.Root.GetSubtree(0).GetSubtree(0), strict);
}
public static HashNode[] MakeNodes(this ISymbolicExpressionTreeNode node, bool strict = false) {
return node.IterateNodesPostfix().Select(x => x.ToHashNode(strict)).ToArray().UpdateNodeSizes();
}
#region parse a nodes array back into a tree
public static ISymbolicExpressionTree ToTree(this HashNode[] nodes) {
var root = new ProgramRootSymbol().CreateTreeNode();
var start = new StartSymbol().CreateTreeNode();
root.AddSubtree(start);
start.AddSubtree(nodes.ToSubtree());
return new SymbolicExpressionTree(root);
}
public static ISymbolicExpressionTreeNode ToSubtree(this HashNode[] nodes) {
var treeNodes = nodes.Select(x => x.Data.Symbol.CreateTreeNode()).ToArray();
for (int i = nodes.Length - 1; i >= 0; --i) {
var node = nodes[i];
if (node.IsLeaf) {
if (node.Data is VariableTreeNode variable) {
var variableTreeNode = (VariableTreeNode)treeNodes[i];
variableTreeNode.VariableName = variable.VariableName;
variableTreeNode.Weight = variable.Weight;
} else if (node.Data is ConstantTreeNode @const) {
var constantTreeNode = (ConstantTreeNode)treeNodes[i];
constantTreeNode.Value = @const.Value;
}
continue;
}
var treeNode = treeNodes[i];
foreach (var j in nodes.IterateChildren(i)) {
treeNode.AddSubtree(treeNodes[j]);
}
}
return treeNodes.Last();
}
private static T CreateTreeNode(this ISymbol symbol) where T : class, ISymbolicExpressionTreeNode {
return (T)symbol.CreateTreeNode();
}
#endregion
#region tree simplification
// these simplification methods rely on the assumption that child nodes of the current node have already been simplified
// (in other words simplification should be applied in a bottom-up fashion)
public static ISymbolicExpressionTree Simplify(ISymbolicExpressionTree tree) {
ulong hashFunction(byte[] bytes) => HashUtil.JSHash(bytes);
var root = tree.Root.GetSubtree(0).GetSubtree(0);
var nodes = root.MakeNodes();
var simplified = nodes.Simplify(hashFunction);
return simplified.ToTree();
}
public static void SimplifyAddition(ref HashNode[] nodes, int i) {
// simplify additions of terms by eliminating terms with the same symbol and hash
var children = nodes.IterateChildren(i);
// we always assume the child nodes are sorted
var curr = children[0];
var node = nodes[i];
foreach (var j in children.Skip(1)) {
if (nodes[j] == nodes[curr]) {
nodes.SetEnabled(j, false);
node.Arity--;
} else {
curr = j;
}
}
if (node.Arity == 1) { // if the arity is 1 we don't need the addition node at all
node.Enabled = false;
}
}
// simplify multiplications by reducing constants and div terms
public static void SimplifyMultiplication(ref HashNode[] nodes, int i) {
var node = nodes[i];
var children = nodes.IterateChildren(i);
for (int j = 0; j < children.Length; ++j) {
var c = children[j];
var child = nodes[c];
if (!child.Enabled)
continue;
var symbol = child.Data.Symbol;
if (symbol is Constant) {
for (int k = j + 1; k < children.Length; ++k) {
var d = children[k];
if (nodes[d].Data.Symbol is Constant) {
nodes[d].Enabled = false;
node.Arity--;
} else {
break;
}
}
} else if (symbol is Division) {
var div = nodes[c];
var denominator =
div.Arity == 1 ?
nodes[c - 1] : // 1 / x is expressed as div(x) (with a single child)
nodes[c - nodes[c - 1].Size - 2]; // assume division always has arity 1 or 2
foreach (var d in children) {
if (nodes[d].Enabled && nodes[d] == denominator) {
nodes[c].Enabled = nodes[d].Enabled = denominator.Enabled = false;
node.Arity -= 2; // matching child + division node
break;
}
}
}
if (node.Arity == 0) { // if everything is simplified this node becomes constant
var constantTreeNode = constant.CreateTreeNode();
constantTreeNode.Value = 1;
nodes[i] = constantTreeNode.ToHashNode();
} else if (node.Arity == 1) { // when i have only 1 arg left i can skip this node
node.Enabled = false;
}
}
}
public static void SimplifyDivision(ref HashNode[] nodes, int i) {
var node = nodes[i];
var children = nodes.IterateChildren(i);
var tmp = nodes;
if (children.All(x => tmp[x].Data.Symbol is Constant)) {
var v = ((ConstantTreeNode)nodes[children.First()].Data).Value;
if (node.Arity == 1) {
v = 1 / v;
} else if (node.Arity > 1) {
foreach (var j in children.Skip(1)) {
v /= ((ConstantTreeNode)nodes[j].Data).Value;
}
}
var constantTreeNode = constant.CreateTreeNode();
constantTreeNode.Value = v;
nodes[i] = constantTreeNode.ToHashNode();
return;
}
var nominator = nodes[children[0]];
foreach (var j in children.Skip(1)) {
var denominator = nodes[j];
if (nominator == denominator) {
// disable all the children of the division node (nominator and children + denominator and children)
nominator.Enabled = denominator.Enabled = false;
node.Arity -= 2; // nominator + denominator
}
if (node.Arity == 0) {
var constantTreeNode = constant.CreateTreeNode();
constantTreeNode.Value = 1; // x / x = 1
nodes[i] = constantTreeNode.ToHashNode();
}
}
}
public static void SimplifyUnaryNode(ref HashNode[] nodes, int i) {
// check if the child of the unary node is a constant, then the whole node can be simplified
var parent = nodes[i];
var child = nodes[i - 1];
var parentSymbol = parent.Data.Symbol;
var childSymbol = child.Data.Symbol;
if (childSymbol is Constant) {
nodes[i].Enabled = false;
} else if ((parentSymbol is Exponential && childSymbol is Logarithm) || (parentSymbol is Logarithm && childSymbol is Exponential)) {
child.Enabled = parent.Enabled = false;
}
}
public static void SimplifyBinaryNode(ref HashNode[] nodes, int i) {
var children = nodes.IterateChildren(i);
var tmp = nodes;
if (children.All(x => tmp[x].Data.Symbol is Constant)) {
foreach (var j in children) {
nodes[j].Enabled = false;
}
nodes[i] = constant.CreateTreeNode().ToHashNode();
}
}
#endregion
}
}