1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 |
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 |
|
---|
27 | using HEAL.Attic;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [StorableType("CFF2B805-FE21-427B-B899-531D3AB1C7EF")]
|
---|
31 | [Item("GaussianKernel", "A kernel function that uses Gaussian function exp(-n²/beta²). As described in http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/")]
|
---|
32 | public class GaussianKernel : KernelBase {
|
---|
33 | [StorableConstructor]
|
---|
34 | protected GaussianKernel(StorableConstructorFlag _) : base(_) { }
|
---|
35 |
|
---|
36 | protected GaussianKernel(GaussianKernel original, Cloner cloner) : base(original, cloner) { }
|
---|
37 |
|
---|
38 | public GaussianKernel() {
|
---|
39 | }
|
---|
40 |
|
---|
41 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
42 | return new GaussianKernel(this, cloner);
|
---|
43 | }
|
---|
44 |
|
---|
45 | protected override double Get(double norm) {
|
---|
46 | if (Beta == null) throw new InvalidOperationException("Can not calculate kernel distance while Beta is null");
|
---|
47 | var beta = Beta.Value;
|
---|
48 | if (Math.Abs(beta) < double.Epsilon) return double.NaN;
|
---|
49 | var d = norm / beta;
|
---|
50 | return Math.Exp(-d * d);
|
---|
51 | }
|
---|
52 |
|
---|
53 | //2 * n²/b²* 1/b * exp(-n²/b²)
|
---|
54 | protected override double GetGradient(double norm) {
|
---|
55 | if (Beta == null) throw new InvalidOperationException("Can not calculate kernel distance gradient while Beta is null");
|
---|
56 | var beta = Beta.Value;
|
---|
57 | if (Math.Abs(beta) < double.Epsilon) return double.NaN;
|
---|
58 | var d = norm / beta;
|
---|
59 | return 2 * d * d / beta * Math.Exp(-d * d);
|
---|
60 | }
|
---|
61 | }
|
---|
62 | }
|
---|