#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { [StorableClass] [Item("DataAnalysisModel", "Base class for data analysis models.")] public abstract class DataAnalysisModel : NamedItem, IDataAnalysisModel { [StorableConstructor] protected DataAnalysisModel(bool deserializing) : base(deserializing) { } protected DataAnalysisModel(DataAnalysisModel original, Cloner cloner) : base(original, cloner) { } protected DataAnalysisModel() { } protected DataAnalysisModel(string name) : base(name) { } protected DataAnalysisModel(string name, string description) : base(name, description) { } public abstract IEnumerable VariablesUsedForPrediction { get; } public virtual bool IsDatasetCompatible(IDataset dataset, out string errorMessage) { if (dataset == null) throw new ArgumentNullException("dataset", "The provided dataset is null."); return IsDatasetCompatible(this, dataset, out errorMessage); } public abstract bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage); public static bool IsDatasetCompatible(IDataAnalysisModel model, IDataset dataset, out string errorMessage) { if(model == null) throw new ArgumentNullException("model", "The provided model is null."); if (dataset == null) throw new ArgumentNullException("dataset", "The provided dataset is null."); errorMessage = string.Empty; foreach (var variable in model.VariablesUsedForPrediction) { if (!dataset.ContainsVariable(variable)) { if (string.IsNullOrEmpty(errorMessage)) { errorMessage = "The following variables must be present in the dataset for model evaluation:"; } errorMessage += System.Environment.NewLine + " " + variable; } } return string.IsNullOrEmpty(errorMessage); } } }