#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Represents a linear regression model
///
[StorableClass]
[Item("Linear Regression Model", "Represents a linear regression model.")]
public sealed class LinearRegressionModel : RegressionModel, IConfidenceRegressionModel {
public static new Image StaticItemImage {
get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
}
[Storable]
public double[,] C {
get; private set;
}
[Storable]
public double[] W {
get; private set;
}
[Storable]
public double NoiseSigma {
get; private set;
}
public override IEnumerable VariablesUsedForPrediction {
get { return doubleVariables.Union(factorVariables.Select(f => f.Key)); }
}
[Storable]
private string[] doubleVariables;
[Storable]
private List>> factorVariables;
///
/// Enumerable of variable names used by the model including one-hot-encoded of factor variables.
///
public IEnumerable ParameterNames {
get {
return factorVariables.SelectMany(kvp => kvp.Value.Select(factorVal => $"{kvp.Key}={factorVal}"))
.Concat(doubleVariables)
.Concat(new[] { "" });
}
}
[StorableConstructor]
private LinearRegressionModel(bool deserializing)
: base(deserializing) {
}
private LinearRegressionModel(LinearRegressionModel original, Cloner cloner)
: base(original, cloner) {
this.W = original.W;
this.C = original.C;
this.NoiseSigma = original.NoiseSigma;
doubleVariables = (string[])original.doubleVariables.Clone();
this.factorVariables = original.factorVariables.Select(kvp => new KeyValuePair>(kvp.Key, new List(kvp.Value))).ToList();
}
public LinearRegressionModel(double[] w, double[,] covariance, double noiseSigma, string targetVariable, IEnumerable doubleInputVariables, IEnumerable>> factorVariables)
: base(targetVariable) {
this.name = ItemName;
this.description = ItemDescription;
this.W = new double[w.Length];
Array.Copy(w, W, w.Length);
this.C = new double[covariance.GetLength(0), covariance.GetLength(1)];
Array.Copy(covariance, C, covariance.Length);
this.NoiseSigma = noiseSigma;
this.doubleVariables = doubleInputVariables.ToArray();
// clone
this.factorVariables = factorVariables.Select(kvp => new KeyValuePair>(kvp.Key, new List(kvp.Value))).ToList();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new LinearRegressionModel(this, cloner);
}
public override IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) {
double[,] inputData = dataset.ToArray(doubleVariables, rows);
double[,] factorData = dataset.ToArray(factorVariables, rows);
inputData = factorData.HorzCat(inputData);
int n = inputData.GetLength(0);
int columns = inputData.GetLength(1);
for (int row = 0; row < n; row++) {
double p = 0.0;
for (int column = 0; column < columns; column++) {
p += W[column] * inputData[row, column];
}
p += W[columns];
yield return p;
}
}
public IEnumerable GetEstimatedVariances(IDataset dataset, IEnumerable rows) {
double[,] inputData = dataset.ToArray(doubleVariables, rows);
double[,] factorData = dataset.ToArray(factorVariables, rows);
inputData = factorData.HorzCat(inputData);
int n = inputData.GetLength(0);
int columns = inputData.GetLength(1);
double[] d = new double[C.GetLength(0)];
for (int row = 0; row < n; row++) {
for (int column = 0; column < columns; column++) {
d[column] = inputData[row, column];
}
d[columns] = 1;
double var = 0.0;
for (int i = 0; i < d.Length; i++) {
for (int j = 0; j < d.Length; j++) {
var += d[i] * C[i, j] * d[j];
}
}
yield return var + NoiseSigma * NoiseSigma;
}
}
public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new ConfidenceRegressionSolution(this, new RegressionProblemData(problemData));
}
}
}