#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
[Item("DTLZ5", "Testfunction as defined as DTLZ5 in http://repository.ias.ac.in/81671/ [30.11.15]")]
[StorableClass]
public class DTLZ5 : DTLZ {
[StorableConstructor]
protected DTLZ5(bool deserializing) : base(deserializing) { }
protected DTLZ5(DTLZ5 original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new DTLZ5(this, cloner);
}
public DTLZ5() : base() { }
public override double[] Evaluate(RealVector r, int objectives) {
if (r.Length < objectives) {
throw new ArgumentException("The dimensionality of the problem(ProblemSize) must be larger than or equal to the number of objectives");
}
var res = new double[objectives];
//calculate g(Xm)
double g = 0;
for (var i = objectives; i < r.Length; i++) {
var d = r[i] - 0.5;
g += d * d;
}
//phi definition
Func phi;
phi = (double x) => { return Math.PI / (4 * (1 + g)) * (1 + 2 * g * x); };
//calculating f0...fM-1
for (var i = 0; i < objectives; i++) {
var f = i == 0 ? 1 : (Math.Sin(phi(r[objectives - i - 1]) * Math.PI / 2)) * (1 + g);
for (var j = 0; j < objectives - i - 1; j++) {
f *= Math.Cos(phi(r[j]) * Math.PI / 2);
}
res[i] = f;
}
return res;
}
}
}