#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.TestFunctions.MultiObjective { [Item("DTLZ5", "Testfunction as defined as DTLZ5 in http://repository.ias.ac.in/81671/ [30.11.15]")] [StorableClass] public class DTLZ5 : DTLZ { [StorableConstructor] protected DTLZ5(bool deserializing) : base(deserializing) { } protected DTLZ5(DTLZ5 original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new DTLZ5(this, cloner); } public DTLZ5() : base() { } public override double[] Evaluate(RealVector r, int objectives) { if (r.Length < objectives) { throw new ArgumentException("The dimensionality of the problem(ProblemSize) must be larger than or equal to the number of objectives"); } var res = new double[objectives]; //calculate g(Xm) double g = 0; for (var i = objectives; i < r.Length; i++) { var d = r[i] - 0.5; g += d * d; } //phi definition Func phi; phi = (double x) => { return Math.PI / (4 * (1 + g)) * (1 + 2 * g * x); }; //calculating f0...fM-1 for (var i = 0; i < objectives; i++) { var f = i == 0 ? 1 : (Math.Sin(phi(r[objectives - i - 1]) * Math.PI / 2)) * (1 + g); for (var j = 0; j < objectives - i - 1; j++) { f *= Math.Cos(phi(r[j]) * Math.PI / 2); } res[i] = f; } return res; } } }