#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Optimization { [StorableClass] public abstract class SingleObjectiveBasicProblem : BasicProblem, ISingleObjectiveBasicProblem where TEncoding : class, IEncoding { protected IValueParameter BestKnownQualityParameter { get { return (IValueParameter)Parameters["BestKnownQuality"]; } } public double BestKnownQuality { get { if (BestKnownQualityParameter.Value == null) return double.NaN; return BestKnownQualityParameter.Value.Value; } set { if (BestKnownQualityParameter.Value == null) BestKnownQualityParameter.Value = new DoubleValue(value); else BestKnownQualityParameter.Value.Value = value; } } [StorableConstructor] protected SingleObjectiveBasicProblem(bool deserializing) : base(deserializing) { } protected SingleObjectiveBasicProblem(SingleObjectiveBasicProblem original, Cloner cloner) : base(original, cloner) { ParameterizeOperators(); } protected SingleObjectiveBasicProblem() : base() { Parameters.Add(new FixedValueParameter("Maximization", "Set to false if the problem should be minimized.", (BoolValue)new BoolValue(Maximization).AsReadOnly()) { Hidden = true }); Parameters.Add(new OptionalValueParameter("BestKnownQuality", "The quality of the best known solution of this problem.")); Operators.Add(Evaluator); Operators.Add(new SingleObjectiveAnalyzer()); Operators.Add(new SingleObjectiveImprover()); Operators.Add(new SingleObjectiveMoveEvaluator()); Operators.Add(new SingleObjectiveMoveGenerator()); Operators.Add(new SingleObjectiveMoveMaker()); ParameterizeOperators(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { ParameterizeOperators(); } public abstract bool Maximization { get; } public abstract double Evaluate(Individual individual, IRandom random); public virtual void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) { } public virtual IEnumerable GetNeighbors(Individual individual, IRandom random) { return Enumerable.Empty(); } protected Tuple GetBestIndividual(Individual[] individuals, double[] qualities) { return GetBestIndividual(individuals, qualities, Maximization); } public static Tuple GetBestIndividual(Individual[] individuals, double[] qualities, bool maximization) { var zipped = individuals.Zip(qualities, (i, q) => new { Individual = i, Quality = q }); var best = (maximization ? zipped.OrderByDescending(z => z.Quality) : zipped.OrderBy(z => z.Quality)).First(); return Tuple.Create(best.Individual, best.Quality); } protected override void OnOperatorsChanged() { base.OnOperatorsChanged(); if (Encoding != null) { PruneMultiObjectiveOperators(Encoding); var multiEncoding = Encoding as MultiEncoding; if (multiEncoding != null) { foreach (var encoding in multiEncoding.Encodings.ToList()) { PruneMultiObjectiveOperators(encoding); } } } } private void PruneMultiObjectiveOperators(IEncoding encoding) { if (encoding.Operators.Any(x => x is IMultiObjectiveOperator && !(x is ISingleObjectiveOperator))) encoding.Operators = encoding.Operators.Where(x => !(x is IMultiObjectiveOperator) || x is ISingleObjectiveOperator).ToList(); foreach (var multiOp in Encoding.Operators.OfType()) { foreach (var moOp in multiOp.Operators.Where(x => x is IMultiObjectiveOperator).ToList()) { multiOp.RemoveOperator(moOp); } } } protected override void OnEvaluatorChanged() { base.OnEvaluatorChanged(); ParameterizeOperators(); } private void ParameterizeOperators() { foreach (var op in Operators.OfType()) op.EvaluateFunc = Evaluate; foreach (var op in Operators.OfType()) op.AnalyzeAction = Analyze; foreach (var op in Operators.OfType()) op.GetNeighborsFunc = GetNeighbors; } #region ISingleObjectiveHeuristicOptimizationProblem Members IParameter ISingleObjectiveHeuristicOptimizationProblem.MaximizationParameter { get { return Parameters["Maximization"]; } } IParameter ISingleObjectiveHeuristicOptimizationProblem.BestKnownQualityParameter { get { return Parameters["BestKnownQuality"]; } } ISingleObjectiveEvaluator ISingleObjectiveHeuristicOptimizationProblem.Evaluator { get { return Evaluator; } } #endregion } }