#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Tests;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Encodings.PermutationEncoding.Tests {
///
///This is a test class for PartiallyMatchedCrossover and is intended
///to contain all PartiallyMatchedCrossover Unit Tests
///
[TestClass()]
public class PartiallyMatchedCrossoverTest {
///
///A test for Apply
///
[TestMethod]
[TestCategory("Encodings.Permutation")]
[TestProperty("Time", "short")]
public void PartiallyMatchedCrossoverApplyTest() {
TestRandom random = new TestRandom();
Permutation parent1, parent2, expected, actual;
// The following test is based on an example from Larranaga, 1999. Genetic Algorithms for the Traveling Salesman Problem.
random.Reset();
random.IntNumbers = new int[] { 3, 5 };
parent1 = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 0, 1, 2, 3, 4, 5, 6, 7 });
Assert.IsTrue(parent1.Validate());
parent2 = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 2, 6, 4, 0, 5, 7, 1, 3 });
Assert.IsTrue(parent2.Validate());
expected = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 2, 6, 7, 3, 4, 5, 1, 0 });
Assert.IsTrue(expected.Validate());
actual = PartiallyMatchedCrossover.Apply(random, parent1, parent2);
Assert.IsTrue(actual.Validate());
Assert.IsTrue(Auxiliary.PermutationIsEqualByPosition(expected, actual));
// The following test is based on an example from Affenzeller, M. et al. 2009. Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. CRC Press. p. 134.
random.Reset();
random.IntNumbers = new int[] { 5, 7 };
parent1 = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 });
Assert.IsTrue(parent1.Validate());
parent2 = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 2, 5, 6, 0, 9, 1, 3, 8, 4, 7 });
Assert.IsTrue(parent2.Validate());
expected = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 2, 1, 3, 0, 9, 5, 6, 7, 4, 8 });
Assert.IsTrue(expected.Validate());
actual = PartiallyMatchedCrossover.Apply(random, parent1, parent2);
Assert.IsTrue(actual.Validate());
Assert.IsTrue(Auxiliary.PermutationIsEqualByPosition(expected, actual));
// perform a test when the two permutations are of unequal length
random.Reset();
bool exceptionFired = false;
try {
PartiallyMatchedCrossover.Apply(random, new Permutation(PermutationTypes.RelativeUndirected, 8), new Permutation(PermutationTypes.RelativeUndirected, 6));
}
catch (System.ArgumentException) {
exceptionFired = true;
}
Assert.IsTrue(exceptionFired);
}
}
}